Marine Fisheries in Mozambique: Catches Updated to 2010 and Taxonomic Disaggregation*

Beau Doherty,¹ Margaret M. McBride,² Atanásio J. Brito,³ Frédéric Le Manach,^{1,4†} Lizette Sousa,³ Isabel Chauca³ and Dirk Zeller¹

¹ Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
 ² Institute of Marine Research, P.O Box 1870 Nordnes, 5817 Bergen, Norway
 ³ Instituto Nacional de Investigação Pesqueira, P.O. Box 4603, Maputo, Mozambique
 ⁴ Institut de Recherche pour le Développement, UMR212 Ecosystèmes Marins Exploités, Avenue Jean Monnet, CS 30171, 34203 Sète cedex, France

[†] Current address: BLOOM Association, 77 rue du Faubourg Saint-Denis, 75010 Paris, France

b.doherty@fisheries.ubc.ca; margaret.mcbride@imr.no; atanasio.brito@iip.gov.mz; fredericlemanach@bloomassociation.org; mlpsousa@hotmail.com; d.zeller@fisheries.ubc.ca; ichauca@yahoo.com.br

Abstract

Reconstructed catch and discard estimates for Mozambique's marine fisheries sectors (small-scale and industrial) were updated from a 2007 contribution by J. Jacquet and D. Zeller to encompass the entire 1950–2010 period. The species composition of the reconstructed catches was also estimated for each year. The total reconstructed catch for 1950–2010 was approximately 8.2 million tonnes (t), which is 4.6 times the official data reported to the Food and Agriculture Organization of the United Nations (FAO), i.e., landings of 1.8 million t over this 61-year period. However, significant improvements have occurred in the data reported to FAO for recent years (2003–2010), specifically in 2009 and 2010, when small-scale catches were comprehensively reported. FAO data prior to 2003 remain incomplete, with large unreported catches and poor taxonomic resolution for small-scale fisheries. Mozambique's total marine fisheries catch for the 1950–2010 period were composed largely of the families Clupeidae (11%), Engraulidae (9%), and Penaeidae (8%). However, historical data from the 1970s suggest significant changes in overall species composition of small-scale fisheries that are unaccounted for in official catch statistics.

INTRODUCTION

Mozambique stretches along the coast of East Africa, between South Africa and Tanzania (Figure 1), where its mangroves, coral reefs, and seagrass beds support a variety of marine life (Bandeira *et al.* 2002). Of the 1,425 marine finfish species known to occur within Mozambique's Exclusive Economic Zone (EEZ), nearly 300 are of commercial importance (www. fishbase.org). At least 14 species of shrimps are of commercial importance (Appendix Table A1), while other valuable fisheries are conducted for *Metanephrops mozambicus* (African lobster), *Palinurus delagoae* (Natal spiny lobsters), *Chaceon macphersoni* (pink geryons), holothurians, and sharks (contributions in Pauly 1992; Groeneveld and Melville-Smith 1995; Fennessy and Groeneveld 1997; Abdula 1998; Kroese and Sauer 1998; de Sousa 2001; Pierce *et al.* 2008). A listing of valuable species across Mozambique's different fishing sectors is presented in Appendix Table A1.

Officially, marine capture fisheries account for more than 90% of Mozambique's total fish catch (FAO 2007) and coastal communities depend on the sea and its resources for survival, with fish accounting for 50% of the population's protein intake (Hara *et al.* 2001; van der Elst *et al.* 2005). National catch data show that small-scale fisheries account for over 80% of landed marine captures and thus play a significant role in the national economy (e.g., providing direct employment in fishing, fish processing and marketing). Industrial/semi-

Figure 1. Map of Mozambique and its Exclusive Economic Zone (EEZ), as well as the extent of the continental shelf (in darker blue). The various districts are also delimited by dotted lines.

^{*} Cite as: Doherty B, McBride MM, Brito AJ, Le Manach F, Sousa L, Chauca I and Zeller D (2015) Marine fisheries in Mozambique: catches updated to 2010 and taxonomic disaggregation. Pp. 67–81 *In* Le Manach F and Pauly D (eds.) Fisheries catch reconstructions in the Western Indian Ocean, 1950–2010. Fisheries Centre Research Reports 23(2). Fisheries Centre, University of British Columbia [ISSN 1198–6727].

industrial fisheries are mostly export-oriented, targeting mainly penaeid shrimp, and represent an important source of export income (Pinto 2001; FAO 2007).

Despite the importance of marine fisheries for food security and the national economy, fisheries statistics for Mozambique and much of the region remain underreported, mainly due to underestimates of landings by the small-scale fisheries (van der Elst *et al.* 2005; Blythe *et al.* 2013). FAO catch statistics for Mozambique's industrial fisheries are also underreported (Jacquet *et al.* 2010) and do not include discards, which are substantial for the industrial crustacean fisheries (Fennessy 1994; Fennessy and Groeneveld 1997; Pinto 2001). A shallow-water shrimp fishery has been present since the 1950s (FAO 2013), mostly operating at depths below 50m off Sofala Bank (Fennessy and Isaksen 2007). On average about 15% of the landings are shrimp, while about 85% is bycatch (Brito and Abdula 2008). Most shrimp catch is composed of *Fenneropenaeus indicus* (Indian white prawns) and *Metapenaeus monoceros* (speckled shrimp), but *Marsupenaeus japonicus* (Kuruma shrimp), *Melicertus latisulcatus* (western king prawns), *Penaeus monodon* (giant tiger prawns), and *P. semisulcatus* (green tiger prawns) are also landed (Fennessy and Groeneveld 1997; IIP 2003; Pinto 2001). Since *circa* 1986 (FAO 2013), Mozambique has also had a deep-water crustacean fishery that fishes at depths around 300–500 m (Groeneveld and Melville-Smith 1995), landing predominantly *Haliporoides triarthrus* (knife shrimp), African lobster, and pink geryons (Tortensen and Pacule 1992; de Sousa 1992; IIP 2008, 2009). A bottom trawl fishery targeting *Decapterus russeli*, *D. macrosoma*, and *Selar crumenophthalmus* (three species of scads), and *Rastrelliger kanagurta* (Indian mackerel) also operated in Sofala Bank and Boa Paz from 1977 to 1992 as part of the Mozambique-USSR joint venture, MOSOPESCA (Silva and Sousa 1988; Sousa 1992).

Mozambique began its sampling program for multi-national industrial and semi-industrial fisheries with the founding of the *Instituto Nacional de Investigação Pesqueira* (Fisheries Research Institute) in 1977 (Bandeira *et al.* 2002). Since the early 1980s, the program has included the collection of fishery-dependent data *via* logbooks of commercial catch categorized taxonomically (by order, family, or species), and publications of the *Revista de Investigação Pesqueira* (Fisheries Research Journal; Bandeira *et al.* 2002). This program was broadened during the 1980s to include an onboard observer-sampling component. Fishery-independent data have also been collected through a series of scientific surveys that were conducted occasionally between 1976 and 1991 depending on the availability of vessels, but have been conducted systematically after 1991. Collection of data (catch, effort, and species composition) from Mozambique's small-scale fisheries began in 1997 in two provinces (Inhambane and Nampula), but has now been expanded to cover all coastal provinces (Dias and Afonso 2011). The composition of species discarded from industrial shallow-water shrimp fisheries also provided valuable information for Mozambique fisheries (Fennessy 1994; Fennessy *et al.* 1994; Groeneveld and Melville-Smith 1995; Fennessy *et al.* 2004).

The sustainable management of fisheries is imperative for food and job security in Mozambique. In many countries, catch data are often the only data available for such management (Kleisner *et al.* 2012; Pauly 2013) and may be underreported by 100% or more (see, e.g., Zeller *et al.* 2007; Wielgus *et al.* 2010; Le Manach *et al.* 2012). Historical baselines and improved catch statistics, such as those presented in this study, are needed to better understand the impacts of Mozambican fisheries on its diverse marine ecosystems and inform fisheries policies (Pauly 1998, 2007; Pandolfi *et al.* 2003; McClenachan *et al.* 2012). The previous catch reconstruction for Mozambique (Jacquet and Zeller 2007; Jacquet *et al.* 2010) included reconstructed catches from domestic small-scale fisheries, industrial fisheries and discards from 1950–2004. Jacquet *et al.* (2010) total reconstructed catches over this period were 6.2 times those supplied to FAO by Mozambique, largely due to a lack of resources for collecting catch statistics for small-scale fisheries and their consequent under-reporting. This research updates the original work, extending catch estimates up to 2010 and providing an improved taxonomic disaggregation by sector. This work focuses on Mozambique's domestic fisheries and does not include estimates of industrial fishing by foreign-owned vessels operating in Mozambique's EEZ, although these are substantial (see, e.g., Silva and Sousa 1988; van der Elst *et al.* 2005).¹

Methods

Update of marine catches

Catch data for marine fisheries for 1950–2010 were extracted from FishStatJ (FAO 2012), the fisheries database of the Food and Agriculture Organization of the United Nations (FAO). The most recent FAO dataset shows significant increases in the reported catches for 2003 and 2004, compared to the FAO landings data used in the original catch reconstruction (Jacquet *et al.* 2010). FAO landings for 2005–2010, which were not reviewed in Jacquet and Zeller (2007) and Jacquet *et al.* (2010), have also significantly increased compared to previous levels and are further discussed herein.

¹ There are significant catches by industrial purse seiners (mostly European) and longliners (mostly Central and Eastern Asian) targeting tuna, billfish and sharks in Mozambique (<u>www.transparentsea.co</u>). The Mozambique government issues licenses to many of these vessels, however, it is also thought that there is up to 100 unlicensed longline vessels fishing illegally in the Mozambique channel (Anon. 2008; <u>www.transparentsea.co</u>).

Sectoral catch as defined by the Sea Around Us

The *Sea Around Us* uses the following fishing sectors in its global catch database: 'industrial' (i.e., large-scale commercial), 'artisanal' (i.e., small-scale commercial), and 'subsistence' (i.e., small-scale non-commercial activities whose primary purpose is self- or family-consumption). For this study, small-scale fisheries are defined as fisheries that use small (or no) vessels, have a low capital investment, and generally fish inshore waters of Mozambique. Industrial fisheries are defined as fisheries that use larger vessels with more advanced equipment and have a higher capital investment (www.fao.org). This study classified both semi-industrial and industrial fisheries as industrial.²

National fisheries catch statistics from 2000–2010 (obtained from the *Instituto Nacional de Desenvolvimento de Aquacultura;* National Institute of Aquaculture Development) form the basis of the FAO landings data and are separated into 3 sectors, i.e., 'commercial', 'artisanal', and 'aquaculture'. The national commercial catches include Mozambique fisheries classified as both industrial and semi-industrial, while the artisanal catch data were considered representative of small-scale fisheries. With the freshwater taxa and aquaculture production removed, both sector's catches were segregated into 10 separate taxa and the total catches matched exactly with FAO landings data from 2000–2010. Landings data from the *Direcção Nacional das Pescas* (Fisheries Department; DNP 1976), Krantz *et al.* (1986), and Charlier (1994) also provided an indication of the catch by industrial and semi-industrial sectors. Based on these data we allocated reported FAO landings for different taxa to small-scale (clams, holothurians, miscellaneous marine crabs, and elasmobranchs) or industrial sectors (penaeid shrimp, knife shrimp, lobsters, pink geryons, and cephalopods) for the 1950–1999 period. Unidentified marine fish in FAO landings were allocated to both small-scale and industrial sectors, based on the portion of industrial catch reported in DNP (1976), Krantz *et al.* (1986), and Charlier (1994).

Small-scale fisheries

Jacquet *et al.* (2010) estimated that the nationally reported catches from the *Instituto Nacional de Investigação Pesqueira* (National Institute of Fisheries Research; IIP) for 2003 and 2004 accounted for approximately 62% of small-scale fishers. Therefore, they assumed that 38% of catches within the small-scale sector had been unreported and adjusted the catch accordingly. We applied the same approach as Jacquet *et al.* (2010) to small-scale catches from 2003–2007 as the methods of national data collection did not change over this period and small-scale catches were in the same range (58,000–65,000 t·year-1).

In 2008, a new methodology was introduced to extrapolate surveyed catches to a larger geographical area in the Sofala bank region and, since 2009, this method has been used for all areas. Small-scale catches in 2009 and 2010 showed substantial increases and were in the same range (93,000–112,000 t) as reconstructed catches for years 2002–2007. As such, the 2009 and 2010 small-scale catches were considered fully-reported and no adjustment

was made for these years. As the new extrapolation methodology in 2008 was not applied to all areas, 2008 catches were considered underreported. To estimate 2008 catches we applied an average catch rate of 0.69 t-fisher⁻¹-year⁻¹ in conjunction with estimates of small-scale fishers (see Table 1).

Tabl	<u>Fable 1. Mozambique inhabitants, fishers and associated catch rates for 2007–2009</u>								
Year	r Population ^a Number of fishers (Catch rate	Method for calculating catch rates					
	-		(t·fisher ⁻¹ ·year ⁻¹)	_					
2007	21,811,326	135,529 ^b	0.69	Reconstructed catches/# fishers					
2008	22,332,900	138,687°	0.69	Average of 2007 and 2009 catch rates					
2009	22,858,607	141,952°	0.69	Reconstructed catches/# fishers					
^a Sour	ce: http://data	worldbank.org.							

^b Source: IDPPE (2009).

^c Estimate based on 2007 ratio of 6.21 fishers for every 1,000 inhabitants.

Industrial fisheries

We assumed industrial landings form the basis for most taxa in the FAO landings (other than those reported as 'unidentified marine fish') prior to 2000, and comparison with other data sets confirms this (DNP 1976; de Freitas 1989; Charlier 1994; de Sousa 2001). The FAO landings data did not contain MOSOPESCA catches of small pelagics (unless they are allocated as 'unidentified marine fish') from 1977–1987 (Sousa 1992) and 1988–1992 (unpub data, provided by L. Sousa),³ nor did they contain

Table 2.	Source of re	ported	industrial catches from 1950-2010
	a + 1 (+)	-	

Period	Catch (t)	Source
1950–1954	3,300	Jacquet <i>et al.</i> (2010)
1955–1960	3,300–3,900	Krantz <i>et al.</i> (1986)
1961–1975	3,285–15,655	DNP (1976)
1976–1999	13,893-31,207	FAO (2012); Sousa (1992); Charlier (1994);
		unpub. data, provided by L. Sousa)
2000-2010	7,724–13,723	FAO (2012); National Statistics from INAQUA ^a
^a Instituto Na	cional de Desenvol	lvimento de Aquacultura.

a small amount of catches for select taxa (demersals, sharks and large pelagics) reported in Charlier (1994). Thus we supplemented the FAO data in the 1970s-1990s with unreported industrial catches from the MOSOPESCA shad fishery from Sousa (1992) and Charlier (1994) to create an industrial time-series (Table 2).

² Depending on the fidelity of coverage and sampling procedures, the lines of distinction between catch removals from industrial/semi-industrial and small-scale fisheries may become blurred. Since the 1970s, there are accounts of small-scale fishers in Nampula, Zambézia, and Sofala provinces collecting bycatch from industrial/semi-industrial shrimp trawlers. These collections are realized through an exchange program: artisanal fishers or collectors exchange their agricultural produce or money for the fish bycatch of industrial/semi-industrial vessels. The fish is either sold fresh for local consumption or dried for more distant markets (Menezes 2008).

³ Catches from the scad fishery for the 1988–1992 period were obtained from unpublished data presented at the 1993 Master Fisheries Plan seminar.

<u>Discards</u>

Estimates of bycatch to landings ratios from South African and Mozambique shallow-water shrimp fisheries range from 2.3:1 to 5:1 (Fennessy and Groeneveld 1997; Pinto 2001). Most bycatch is comprised of small non-marketable fish and juvenile shrimp that are discarded (Schultz 1992). We used these studies to develop estimates of discard to landings ratios for the 1950–2010 period (Table 3).

The FAO landings data included catches for three different shrimp groupings: 'Penaeus shrimps', 'knife shrimp', and 'Tsivakihini paste shrimp' (*Acetes erythraeus*). Discards associated with shallow-water shrimp fisheries were calculated by multiplying the discard to shrimp landings ratios from Table 3 by FAO 'penaied shrimp' landings, present in FAO data since 1958.

Discard and catch data from Fennessy and Groeneveld (1997) indicated a ratio of target landings (knife shrimp,

Table 3. Discards to shrimp landings (D/L) rates used to estimate discards in Mozambique shallow water shrimp trawl fisheries

Period	D/L	Source
1958-1979	2.9	Carried back 1980 rate
1980	2.9ª	Pelgröm and Sulemane (1982)
1981–1982	2.9-3.0	linear interpolation
1983–1984	3.1ª	Gislason (1985), in Pinto (2001)
1985	3.5	linear interpolation
1986-1990	3.8 ^b	Pacule and Baltazar (1995), in Pinto (2001)
1991	3.8	Fennessy and Groeneveld (1997)
1992	2.9	Fennessy and Groeneveld (1997)
1993	4.5 ^b	Anon. (1994), in Pinto (2001)
1994–1999	4.3-3.0	linear interpolation
2000-2010	2.8	Jacquet et al. (2010)
^a Assuming 5	% of bycat	ch is retained (Pelgröm and Sulemane 1982).

Assuming 5% of bycatch is retained (Pelgrom and Sulemane 1982).
 Assuming 11% of bycatch is retained (Anon. 1994).

African lobster, deep-sea crab) to discards of 1:2.7 in 1992. Discards associated with deep-water crustacean fisheries were calculated by multiplying this ratio by FAO landings of knife shrimp, African lobster and pink geryons, present in the FAO data since 1986. We ignored any discards from Tsivakihini paste shrimp fisheries, as these are generally caught in coastal areas using push nets, bag nets and seines by small-scale fisheries with lower bycatch rates (Chen 1994; Chan 1998; Gillett 2008).

Bycatch data for MOSOPESCA were available from 1980–1985 (Krantz *et al.* 1986), and we applied the median discard to landings ratio of 0.4 to estimate bycatch for years without data (1977–1979, 1987–1996).

Taxonomic disaggregation

The FAO landings data extracted from FishStatJ (FAO 2012) were allocated to 30 different taxa. The taxonomic allocation of the FAO landings were accepted without further disaggregation, with the exception of the 'marine fishes nei' category, which accounted for 34–99 % of reported landings per year.

The IPP began regular publication of industrial/semiindustrial and small-scale fisheries statistics in 2001. These reports (IIP 2001–2010) were used to estimate the catch composition for Mozambique's marine fishing sectors during the 2000s (Table 4). They included bycatch composition of shallow-water industrial shrimp fisheries and catch composition of small-scale fisheries from select provinces from 2001–2010. Additional available information included: a Portuguese Research Report to the International Commission for the South-East Atlantic Fisheries (ICSEAF) that provided estimates of percent catch composition by family for 1972–1973 (Monteiro 1973), and additional bycatch studies from shallow-water shrimp fisheries in the region (Fennessy *et al.* 1994; Pinto 2001).

Reported estimates of species catch composition were therefore unavailable for periods extending from 1950– 1971 and 1974–1999. Accordingly, assumption-based estimations, interpolations, extrapolations and averaging have been used to derive estimates for these periods, with input and expert advice from experienced senior scientists at the IIP (Table 4).

Small-scale sector

Small-scale FAO landings of specific taxa were left unadjusted, while unreported landings and FAO catches allocated as 'unidentified fish' were assigned to specific taxa (Table 4). We assigned 500 t and 700 t of unreported catch in 1990 and 1993, respectively, as holothurian catch based on estimates reported in Abdula (1998) which are missing from the FAO database.

Table 4. Reconstructed catch compositions for small	all-
scale fisheries and industrial crustacean fisheries disca	rds
in Mozambique from 1950–2010.	

Таха	Catch Composition (in %)						
		Small-sca	ale	Discards			
	1950-1973	2003°	2004-2010 ^a	1950-2010			
Invertebrates							
Brachyura	-	-	-	1.7			
Cephalopoda	0.8	0.6	0.4-1.3	1.5			
Nephropodidae	0.1	-	0.0-0.2	-			
Penaidae	5.3	8.7	1.5-8.7	3.8			
Portunidae	0.4	0.5	0.2-0.8	4.4			
Chondrichthyes							
Elasmobranchii	1.1	0.6	0.2-2.8	1.0			
Teleosts							
Ariidae	0.9	1.3	1.3	5.3			
Caesionidae	1.4	1.9	2.0	-			
Carangidae	7.8	10.9	11.1–11.6	0.6			
Clupeidae	12.3	17.2	17.4–18.2	2.3			
Cynoglossidae	-	-		1.5			
Drepaneidae	-	-		2.2			
Engraulidae	9.8	13.7	13.9–14.5	2.8			
Haemulidae	10.7	2.9	3.0-3.1	3.7			
Leiognathidae	0.1	0.2	0.2	0.5			
Lethrinidae	8.5	3.1	3.2-3.3	-			
Lutjanidae	6.4	0.3	0.3-0.4	-			
Mugilidae	1.2	1.6	1.6-1.7	-			
Mullidae	1.1	1.5	1.5-1.6	1.7			
Polynemidae	-	-	-	2.0			
Scaridae	3.0	1.1	1.1	-			
Sciaenidae	2.2	3.1	3.1-3.2	25.9			
Scombridae	3.4	4.7	4.8-5.0	-			
Serranidae	<0.1	< 0.1	<0.1	-			
Siganidae	6.3	2.0	2.0-2.1	-			
Synodontidae	-	-	-	2.2			
Trichiuridae	1.5	2.1	2.1-2.2	4.7			
Tetraodontidae	-	-	-	2.7			
Others ^b	15.6	21.9	22.1-23.1	29.6			

^a A separate breakdown for 7 major groups was available for the smallscale sector for each year from 2003–2010. The values for 5 major groups and the disaggregated teleost component are shown for 2003 as well as the range of maximum and minimum values for 2004–2010. ^b Small-scale includes 10 taxa, each occupying <1%, and marine fishes not identified. Discards includes 6 families and unidentified species. The *IIP Relatório Anual* report series contained annual estimates of catch composition by family for small-scale fisheries for select coastal provinces between 2001 and 2010. These reports provided national catch compositions for the small-scale sector from 2003–2010 that separated catches into seven groups; shrimps, cephalopods, crabs, lobster, sharks, fish and others. The latter two groups were combined as teleosts (encompassing both the 'fish' and 'others' categories) as shown in Table 4, and these annual catch compositions were used to further disaggregate unidentified taxa in the reconstructed small-scale catches from 2003–2010. The average catch composition from 2003–2010 was applied to disaggregate the 1950–1973 small-scale reconstructed catches and catch compositions from 1974 to 2002 were interpolated between the assumed 1950–1973 and 2003 breakdowns. The catches were composed mostly of teleost families (90–95% of total catches) and a further disaggregation of the teleost component was attempted.

Mozambique's national data have only provided complete estimates covering all coastal areas for 2009 and 2010, and as a result, these years were considered the best representation of catch composition for Mozambique's small-scale fishing sector. Mozambique's national fisheries surveys (IIP 2009, 2010) provide small-scale catch compositions for all coastal provinces (Cabo Delgado, Nampula, Zambezia, Sofala, Inhambane, and Maputo) except Gaza. We converted these provincial catch compositions into a national catch composition,⁴ which was weighted proportionally to the reported 2010 small-scale catches by province (IIP 2010). This 2010 small-scale catch composition was used to disaggregate the teleost component from 2003–2010 (Table 3).

There was little information regarding the catch composition of Mozambique's fisheries prior to 2000; however, a survey by Monteiro (1973) provided some indication of the major taxa present in catches during the earlier period. Monteiro (1973) recorded the catch composition of 39 beach seines, hauled by tractor winches, in the province of Inhambane between September 1972 and September 1973. Their catch composition was compared with the 2010 small-scale catch compositions for Inhambane in an attempt to estimate a 1973 national catch composition. Based on this comparison, the 5 major taxa (Haemulidae, Lethrinidae, Lutjanidae, Scaridae and Siganidae) observed by Monteiro (1973) were adjusted to levels which were assumed more representative for the entire coastline (Table 5). This left approximately 62% of catches as 'others', which were allocated proportionally to other families in the 2010 small-scale teleost catch composition. This 1973 catch composition was used to disaggregate the teleost component from 1950–1973 (Table 4), and catch compositions from 1974 to 2002 were interpolated between the assumed 1950–1973 and 2003 breakdowns.

Таха	1972/1973 catch composition for Inhambane ^a	2010 teleost catch composition for Inhambane ^b	1972/1973-2010 ratio	2010 national teleost catch composition ^{b,c}	Estimated 1973 national teleost catch composition ^d
Haemulidae	11.3	3.2	3.5	3.3	11.6
Lethrinidae	28.7	10.8	2.7	3.5	9.3
Lutjanidae	4.5	0.25	18.3	0.38	6.9
Scaridae	12.3	4.6	2.7	1.2	3.2
Siganidae	24.2	7.8	3.1	2.2	6.9
Other taxa	19	73	-	90	62

Table 5. Development of the 1973 teleost breakdown (%) for Mozambique's small-scale fisherv

^a Source: Monteiro (1973).

^b Source: IIP (2010).

^d 1973 national catch composition was estimated based on the ratio of the 2010 Inhambane catch composition to the 1973 Inhambane catch composition. These are the percentages used to disaggregate the teleost component and thus are not equivalent to the percentages

For the purposes of the *Sea Around Us* database, small-scale catches were further subdivided into artisanal and subsistence components. It is often difficult to distinguish between these two sectors as most small-scale fishers fish for both subsistence and artisanal purposes, selling the more valuable species landed and taking the rest home for consumption. The collection of landings data did not record this information and we found no other studies that distinguished between these sectors in Mozambique. We thus employed the same approach as Le Manach *et al.* (this volume), assigning 90% of catch from taxa associated with higher commercial values (Decapoda, Elasmobranchii, Haemulidae, Istiophoridae, Lethrinidae, Lutjanidae, Scaridae, Sciaenidae, Scombridae, Serranidae, Siganidae and Sparidae) as 'artisanal' and the remaining 10% as 'subsistence' to account for spoilt and undersized catches. The remaining taxa were considered less commercially important and we allocated 80% of these catches as 'subsistence' and 20% as 'artisanal'. For species where the distinction was less obvious, i.e., Carangidae and unidentified marine fish, we used an even split, allocating 50% to each small-scale sector. All holothurian catches were considered 'artisanal' (Abdula 1998).

Industrial sector

Catches from the MOSOPESCA shad and mackerel trawl fishery were disaggregated based on the 1986 and 1987 species compositions reported in Sousa (1992). These two years were then averaged to estimate species composition for all other years.

^c See Table 3.

of total catch shown in Table 4.

⁴ The 2010 catch composition (IIP 2010) was used for all provinces except Maputo, which used the 2009 catch composition (IIP 2009) since it was not available in the 2010 report.

Discards

The *IIP Relatório Anual* reports contained bycatch data from 2000–2010, and discard data for 2008–2009 from select industrial shrimp fishing companies sampled. The 2004 bycatch data and the 2008 discard data were disregarded as they contained high penaeid shrimp discards, which were not considered representative of the entire fleet.

The annual 2000–2003, 2005–2008, 2010 bycatch and 2009 discard compositions were averaged to estimate an average composition of discards (Table 4). The average was composed of 11% invertebrates and 89% teleosts, 1/3 of which were unidentified species listed as 'others'. A small amount of the unidentified component (5%) was redistributed to 'missing' teleost families (Ariommatidae, Congridae, Platycephalidea, Pristigasteridae, Soleidae and Tetraodontidate) based on the proportions observed in commercial prawn trawls in Tugela Bank in the early 1990s (Fennessy *et al.* 1994). Another 1% was allocated to elasmobranchs⁵ based on estimates by Schultz (1989) and Sousa (1990; see also Le Manach *et al.* 2012).

RESULTS

Total marine fisheries catches, 1950–2010

The total catch for Mozambique during the 1950–2010 period, as reconstructed here, was nearly 8.2 million t, i.e., 4.6 times the 1.8 million t reported by FAO on behalf of Mozambique for the same period (Figure 2). The total reconstructed catch (including discards) ranged from 55,000 t·year⁻¹ in 1950 to 138,000 t·year⁻¹ in 2010, and reached a peak of nearly 208,000 t·year⁻¹ in 1986.

Total small-scale catch for the 61year period from 1950 to 2010 was over 6.2 million t, of which 55% was deemed artisanal (i.e., mainly for commercial purposes) and 45% was subsistence (Figure 2). Smallscale catches (i.e., artisanal and subsistence combined) increased from nearly 52,000 t·year⁻¹ in 1950 to 108,000 t·year⁻¹ in 2010. Catches from this sector peaked in 1982 at 148,500 t·year⁻¹, and accounted

Figure 2. Total reconstructed catches by sector (subsistence, artisanal, industrial catches, and discards) for Mozambique compared to the landings reported by FAO (dashed line). Total small-scale catches are the sum of 'artisanal' and 'subsistence'.

148,500 t-year⁻¹, and accounted for 76% of the total reconstructed catches for the 1950–2010 period (annual reconstructed catches by sector are available in Appendix Table A2).

Discards and landings from industrial fisheries contributed 14% and 10% to total reconstructed catches, respectively (Figure 2). Industrial catches peaked at around 32,000 t·year⁻¹ in 1988, ranging from around 3,300 t·year⁻¹ in 1950 to 10,000 t·year⁻¹ in 2010. Discards from industrial fisheries were also highest in 1988 at 44,000 t·year⁻¹, and ranged from around 1,500 t·year⁻¹ in 1958 to 20,000 t·year⁻¹ in 2010 (Figure 2).

Noteworthy is the significant improvement in the data provided to the FAO for the 2003–2010 period since the previous reconstruction (see Jacquet and Zeller 2007 and Jacquet *et al.* 2010). Annual reconstructed catches for years 2003–2010 were on average 1.6 times the reported FAO landings for the same period, while they were on average 6.4 times the reported landings for the 1950–2002 period (Figure 2).

Taxonomic disaggregation

Reconstructed catches were allocated to one of 83 taxa or higher order groupings. Results for the total catches from 1950–2010 for all of Mozambique's marine fishing sectors indicate Clupeidae (11%), Engraulidae (9%), Penaeidae (8%), Carangidae (7%), Haemulidae (6%), Sciaenidae (5%) and Lethrinidae (5%) families have historically composed large portions of the catch (Figure 3). Annual reconstructed catches grouped by important taxa are shown in Appendix Table A3.

⁵ See Fennessy (1994) for common elasmobranch species in shrimp bycatch.

The catches of the small-scale sector were dominated by 28 groups of teleosts (92%), followed by shrimps (6%). The five most important taxa in small-scale catches were Clupeidae (14%), Engraulidae Carangidae (12%),(9%), Haemulidae (7%) and Lethrinidae (6%). The reconstructed catch composition, based on Monteiro (1973) study, suggests that the familes Haemulidae, Lethrinidae, Lutjanidae, Scaridae, and Siganidae were more prominent in the catches in early years, accounting for 35% of small-scale catches from 1950–1973 compared to 10% of catches for 2000 - 2010.

The taxonomic breakdown of Mozambique's industrial sector indicated that total catches during the 1950–2010 period were dominated by penaeid shrimp (34%), scads (*Decapterus* spp.; 7%)

Figure 3. Taxonomic breakdown of total marine fisheries catches by major taxa for Mozambique (includes small-scale fisheries, industrial fisheries and discards). 'Others' includes 58 taxonomic groupings.

and knife shrimp (6%), with other teleost species composing most of the remaining catches (49%). Discards from shrimp fisheries consisted primarily of teleosts (88%), with Sciaenidae (26% of discards) being the most common family discarded.

DISCUSSION

The 2003 and 2004 FAO reported landings have increased since the previous reconstruction by Jacquet *et al.* (2010), as have the reported catches for the 2005–2010 period in comparison with earlier years. It is evident that Mozambique's IPP has substantially improved their system of national data collection for small-scale fisheries and has retroactively adjusted the 2003 and 2004 data reported to FAO. The small-scale catch component within the FAO data for 2009 and 2010 were in the same range as the reconstructed small-scale catches (90,000–120,000) for the last decade and were considered fully reported. This is a significant improvement and Mozambique is one of the few countries in the world where this change has been observed by the *Sea Around Us*.

The FAO landings data, however, still do not account for many sources of fisheries removals, particularly from the small-scale sector prior to 2003 and discards from industrial fleets. Discards from industrial shrimp fisheries — which have one of the largest discard rates of any fishing gear (Kelleher 2005) — have historically been responsible for significant removals from Mozambique's marine ecosystems and are not included in FAO landings data. This is the case for *Otolithes ruber* (tigertooth croaker) from the highly discarded Sciaenidae family (Olbers and Fennessy 2007). The decline of this species and potentially other bycatch species that are targeted by small-scale fishers, such as *Thryssa vitrirostris* (Mualeque and Santos 2011), may have important implications for food security in the region (Olbers and Fennessy 2007). Practices such as the collecting of bycatch from industrial shrimp trawlers by small-scale fishers, may serve as a means of reducing overall waste and improving food security for coastal fishers (Olbers and Fennessy 2007; Le Manach *et al.* 2012). In fact, Mozambique regulations require that a 2:1 bycatch to shrimp ratio is landed for this purpose, however the measure is not enforced (Banks and Macfayden 2011). It is clear that monitoring of discards is still inadequate among industrial fisheries in Mozambique, and this component requires further study.

Although there has been an improvement in the total small-scale catches reported to FAO, much of the catch is still reported only as unidentified marine fishes. Despite the lack of a full time-series data for Mozambique's coastal provinces, this study attempted to disaggregate historical catch into more specific taxonomic groups (e.g., families, genus, species). Catch estimates for Inhambane, home to 15% of the country's artisanal fishers (IDPPE 2004, in Jacquet and Zeller 2007), indicate that there have been shifts in the dominant species removed by capture fisheries during the 1950–2010 time period. Reports from this province indicate that catches from the small-scale beach seine fishery during 1972–1973 were dominated by demersal species from the families Haemulidae, Lethrinidae, Lutjanidae, Scaridae, and Siganidae (Monteiro 1973). The proportions of each of these families in Inhambane beach seine catches are now less than half of what they were in the 1970s (IIP 2010). Surveys of fisherman on Inhaca island (de Boer *et al.* 2001) confirmed this trend as fishers noted that *Carangoides* spp. and *Scomberoides* spp. (both from the Carangidae family), *Pomadasys* spp. (Haemulidae), *Lutjanus* spp. (Lutjanidae), *Rhabdosargus* spp. (Sparidae), Dasyatidae and Myliobatidae (rays), squid and cuttlefish were more abundant in historical catches. De Boer *et al.* (2001) found that large predatory fish from higher trophic levels were absent from catches and suggested these trends may be indicative of overfishing (see also Pauly *et al.* 1998).

Whereas information on family-level catch composition was available for all sectors between 2000–2010 (IIP 2001–2010), the only detailed catch composition data for the small-scale sector were from the study of Monteiro (1973). A

variety of assumptions were necessary to extrapolate the available catch composition data to the 1950–2010 period, and as there was little catch sampling and reporting from any sectors occurring prior to 2000 these estimates are approximate. It is possible that the catch composition of demersal families from the Monteiro (1973) report, as well as some pelagic families from the 2010 catch composition (IIP 2010) may have been given too much weight in the earlier time series and this will have significantly impacted estimated catch compositions for the small-scale sector from 1950–2002. Groupers (Serranidae) were not listed in the Monteiro (1973) catch composition and made up a small portion of national catches in recent years (IIP 2010). It is quite possible that groupers were more abundant in earlier catches in Mozambique (Kaunda-Arara *et al.* 2003; Sadovy de Mitcheson *et al.* 2013) than what is reflected in the catch compositions used in this study.

Similarly, we used bycatch data from 2000–2010 to estimate taxonomic composition of discards for the 1950–2010 period, which will not reflect changes in bycatch composition over time (Groeneveld and Melville-Smith 1995; Olbers and Fennessy 2007) and should be taken as approximate. For example, the proportion of *Trichiurus lepturus* (largehead hairtail) and *Pellona ditchela* (Indian pellona) were highly variable in bycatch from different surveys between 1995 and 2010 (Fennessy and Groeneveld 1997; IIP 2001–2010; Pinto 2001; Fennessy and Isaksen 2007). Given the limited bycatch data prior to 2000 for Mozambique shrimp fisheries, it is difficult to assess if this variation is due to sampling or indicative of larger spatial and temporal changes in bycatch species composition. Due to lack of data for deep-water crustacean fisheries, we assumed a similar composition of families in the discards of shallow-water shrimp fisheries, and thus differences in their bycatch are not reflected in our estimates.

It is well established that catch data reported by Mozambique to the FAO has historically been underreported (DNP 1976; van der Elst *et al.* 2005; Jacquet *et al.* 2010; Blythe *et al.* 2013). Van der Elst *et al.* (2005) reports that national estimates under Mozambique's National Fisheries Master Plan were actually 200,600 t and 87,700 t for 1988 and 1995, despite catches reported to the FAO of less than 32,200 t and 22,500 t for the same years. In comparison, our reconstructed catches, excluding discards, are 152,000 t and 147,000 t for years 1988 and 1995. It is clear that considerable uncertainty remains regarding the catch totals for Mozambique fisheries, and although we will never know the 'true' catches for most of this period, this study provides estimates that are much closer to the Mozambican reality than those present in FAO data. FAO data suggests that catches in the Western Indian Ocean peaked *circa* 1999 (van der Elst 2005), however, this may be the result of improved reporting and underreporting in earlier years. For example, FAO landings data for Mozambique show that catches peaked in 2010 and 2011, the last two years reported. However, reconstructed estimates peaked in the mid-1980s. Similarly, trends observed for increased numbers of species in catch data in later years (van der Elst *et al.* 2005) are also likely the result of improved reporting of more detailed taxa in the FAO catch data.

There was high variability in the discard rates observed since the 1980s for industrial shrimp fisheries, some of which were based on small sample sizes that may not have been representative of the average discard rate for the entire commercial fleet. Our discard estimates were based on landings reported to the FAO and were likely a minimum estimate for most years given historical under-reporting of industrial fisheries (see Jacquet *et al.* 2010) and that 40% of vessels do not submit their logbooks (Banks and Macfayden 2011). These estimates provide a good starting point for understanding the scale of discards and the major taxonomic groups affected. Future work that considers temporal and spatial variation in discard rates and taxonomic composition (Fennessy *et al.* 1994) could provide more accurate accounting for discards.

Taxonomic compositions in the reconstructed data remain coarse, and was often left at the family level or higher. Despite the uncertainties in historical taxonomic catch compositions for the last six decades, this exercise was valuable given changes in the catch composition that have likely occurred i) in species composition due to fishing pressure, or other changes in the ecosystem (see de Boer *et al.* 2001); and/or ii) in the species targeted by fishers/ fishing sectors. For example, the bottom trawl fleet targeting pelagic fishes such as mackerel (*Rastrelliger kanagurta*) and scad (*Decapterus* spp.) during the 1980s (Silva and Sousa 1988) was closed in 1993 (L. Sousa, unpub. data). Similarly, some artisanal fishers may have transitioned from shallow waters to areas with deeper water, in which case species catch composition could have undergone corresponding changes. Increased market demand for new seafood products (e.g., holothurians, sea urchins, shark fins, paste shrimps and other non-traditional species) are rapidly gaining economic importance and changing the focus of fisheries in Mozambique (Abdula 1998; Pierce *et al.* 2008). Since *circa* 2000, there has been a large increase in the number of small-scale fishers targeting sharks for the Asian shark fin trade (Pierce *et al.* 2008; Gekoski 2011; Smith 2013). There is little data specific to the small-scale shark fishery in Mozambique (Pierce *et al.* 2008) and thus elasmobranch catches from this sector may well be underestimated in this study (Kroese and Sauer 1998; Pierce *et al.* 2008). Catch data from bather-protection gillnets off the coast of KwaZulu-Natal showed declines of some shark species that may be attributed to shark bycatch in Mozambique's small-scale and shrimp fisheries (Dudley and Simpfendorfer 2006).

Other forces, such as changing environmental conditions may also impact species composition (Cheung *et al.* 2009; Meyer and Weerts 2009; Cheung *et al.* 2010; P \Box rtner and Peck 2010; Perry 2011; Blythe *et al.* 2013). However, without accurate catch time series, it is very difficult to assess the magnitude of these changes and what may have caused them (see also de Boer *et al.* 2001 and Blythe *et al.* 2013). Our findings highlight the importance of recording fisheries statistics for all sources of removals (e.g. small-scale fisheries, industrial fisheries and discards), and also retroactively improving catch statistics for earlier years.

Fisheries catch reconstruction for Mozambique – Doherty et al.

Acknowledgments

The authors of this report would like to acknowledge the support of the *Sea Around Us*, a collaboration between the University of British Columbia and The Pew Charitable Trusts. BD, FLM and DZ also thank the Paul G. Allen Family Foundation for support.

References

- Abdula R (1998) A summary about holothurians in Mozambique. SPC Bêche-de-mer Information Bulletion #10, Secretariat of Pacific Community. 34–35 p.
- Anon. (1994) Projecto de recolha da fauna acompanhante em Quelimane: análise da informação recolhida pelos fiscais. IDPPE, Maputo. 6–15 p.
- Anon. (2008) Stop illegal fishing in Southern Africa. Stop Illegal Fishing, Gaborone (Botswana). vi+85 p.
- Bandeira SO, Paula e Silva R, Paula J, Macia A, Hernroth L, Guissamulo AT and Gove DZ (2002) Marine biological research in Mozambique: past, present and future. AMBIO: a Journal of the Human Environment 31(7): 606–609.
- Banks R and Macfayden G (2011) A blueprint for sustainable tropical shrimp trawl fisheries. Prepared for WWF by Poseidon Aquatic Resource Management Ltd. 125 p.
- Blythe JL, Murray G and Flaherty MS (2013) Historical perspectives and recent trends in the coastal Mozambican fishery. Ecology and Society 18(4): 65.
- Brito AJ and Abdula S (2008) Relatório de Cruzeiro de investigação de camarão no Banco de Sofala realizado de 29 de Janeiro a 17 de Fevereiro de 2007. Relatorio de Cruzeiro n.46, IIP, Maputo (Mozambique). 62 p.
- Chan TY (1998) Shrimps and prawns. pp. 851–864 *In* Carpenter KE and Nierm VH (eds.), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol 2. Cephalopods, crustaceans, holothurians and sharks. Food and Agriculture Organization of the United Nations (FAO), Rome (Italy).
- Chen A (1994) The stow net fishing situation and management in the Zhejiang coastal area. Journal Zhejiang College of Fisheries 13(3): 218–221.
- Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R and Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10: 235–251.
- Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D and Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16: 24–35.
- de Boer WF, van Schie AM, Jocene DF, Mabote AB and Guissamulo A (2001) The impact of artisanal fishery on a tropical intertidal benthic fish community. Environmental Biology of Fishes 61(2): 213–229.
- de Freitas AJ (1989) Shrimps and prawns. pp.81–90 *In* Payne AIL and Crawford JM (eds.) Oceans of Life Off Southern Africa. VlaeBurg Publishers, Cape Town (South Africa).
- de Sousa P (1992) Stock assessment of the deep-water spiny lobster Palinurus delagoae of Mozambique. Population dynamics of exploited fishes and crustaceans in Mozambique. Revista de Investigação Pesqueira 21.
- de Sousa BP (2001) Fishery for the deep-water spiny lobster *Palinurus delagoae* in Mozambique, 1980 to 1999. Marine and Freshwater Research 52(8): 1535–1540.
- Dias N and Afonso P (2011) Overview of fisheries and data information. IndiSeas SWIOFP Meeting/Workshop, January 18–19, 2011, Cape Town (South Africa).
- DNP (1976) Estadisticas basicas de pescas de Mocambique 1961–1975. Direcçãao Nacional de Pescas, Maputo (Mozambique).
- Dudley SF and Simpfendorfer CA (2006) Population status of 14 shark species caught in the protective gillnets off KwaZulu–Natal beaches, South Africa, 1978–2003. Marine and freshwater research 57(2): 225–240.
- FAO (2007) National fishery sector overview The Republic of Mozambique. 17 p.
- FAO (2013) FishStatJ Software for fishery statistical time series. V2.1.1. Food and Agriculture Organization of the United Nations (FAO), Rome (Italy).
- Fennessy S (1994) Incidental capture of elasmobranchs by commercial prawn trawlers on the Tugela Bank, Natal, South Africa. South African Journal of Marine Science 14(1): 287–296.
- Fennessy S and Groeneveld J (1997) A review of the offshore trawl fishery for crustaceans on the east coast of South Africa. Fisheries Management and Ecology 4(2): 135–147.
- Fennessy S and Isaksen B (2007) Can bycatch reduction devices be implemented successfully on prawn trawlers in the Western Indian Ocean? African Journal of Marine Science 29(3): 453–463.
- Fennessy S, Mwatha G and Thiele W, editors (2004) Report of the regional workshop on approaches to reducing shrimp trawl bycatch in the Western Indian Ocean. Mombassa (Kenya), April 13–15 2003. FAO Fisheries Report 734. 49 p.
- Fennessy S, Villacastin C and Field J (1994) Distribution and seasonality of ichthyofauna associated with commercial prawn trawl catches on the Tugela Bank of Natal, South Africa. Fisheries Research 20(2): 263–282.
- Gekoski A (2011) Shark Hunters. The Dive Site.
- Gillett R (2008) Global study of shrimp fisheries. FAO Fisheries Technical Paper No. 475, Food and Agriculture Organization of the United Nations (FAO), Rome (Italy). xxiii+331 p.

- Gislason H (1985) A short note on available information about demersal fish on shallow water part of Sofala Bank. RIP No. 13, Instituto Nacional de Investigação Pesqueira, Maputo (Mozambique). 83–95 p.
- Groeneveld J and Melville-Smith R (1995) Spatial and temporal availability in the multispecies crustacean trawl fishery along the east coast of South Africa and southern Mozambique, 1988–1993. South African Journal of Marine Science 15(1): 123–136.
- Hara MW, Deru J and Pitamber S (2001) Artisanal fisheries development project Republic of Mozambique. African Development Fund. 31 p.
- IDPPE (2004) Censo Nacional da Pesca Artesanal Aguas Maritimas (2002). Instituto de Desenvolviment de Pesca de Pequena Escala (IDPPE), Maputo (Mozambique). 76 p.
- IDPPE (2009) Recenseamento da Pesca Artesanal 2007. Principais Resultados Instituto de Desenvolviment de Pesca de Pequena Escala (IDPPE), Maputo (Mozambique). 83 p.
- IIP (2001) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 56 p.
- IIP (2002) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 60 p.
- IIP (2003) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 60 p.
- IIP (2004) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 56 p.
- IIP (2005) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 55 p.
- IIP (2006) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 60 p.
- IIP (2007) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 64 p.
- IIP (2008) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 64 p.
- IIP (2009) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 70 p.
- IIP (2010) Relatório Annual. Instituto Nacional de Investigação Pesqueira (IIP), Maputo (Mozambique). 70 p.
- Jacquet J, Fox H, Motta H, Ngusaru A and Zeller D (2010) Few data but many fish: marine small-scale fisheries catches for Mozambique and Tanzania. African Journal of Marine Science 32(2): 197–206.
- Jacquet JL and Zeller D (2007) National conflict and fisheries: reconstructing marine fisheries catches for Mozambique. pp. 35–47 *In* Zeller D and Pauly D (eds.), Reconstruction of marine fisheries catches for key countries and regions (1950–2005). Fisheries Centre Research Reports 15(2). University of British Columbia, Vancouver (Canada).
- Kaunda-Arara B, Rose GA, Muchiri MS and Kaka R (2003) Long-term trends in coral reef fish yields and exploitation rates of commercial species from coastal Kenya.
- Kelleher MK (2005) Discards in the world's marine fisheries. An update. FAO Fisheries Technical Paper No. 470, Food and Agriculture Organization of the United Nations (FAO), Rome (Italy). xix+131 p.
- Kleisner K, Zeller D, Froese R and Pauly D (2012) Using global catch data for inferences on the world's marine fisheries. Fish and Fisheries [doi: 10.1111/j.1467–2979.2012.00469.x].
- Krantz L, Sorensen NK, Olesen J, Kotalova J, editors (1986) Nordic support to the fisheries in Mozambique: a sector study. Gothenburg: National Swedish Board of Fisheries.
- Kroese M and Sauer W (1998) Elasmobranch exploitation in Africa. Marine and Freshwater Research 49(7): 573–577.
- Le Manach F, Abunge CA, McClanahan TR and Pauly D (this volume) Tentative reconstruction of Kenya's marine fisheries catch, 1950–2010.
- Le Manach F, Gough C, Harris A, Humber F, Harper S and Zeller D (2012) Unreported fishing, hungry people and political turmoil: the recipe for a food security crisis in Madagascar? Marine Policy 36: 218–255.
- McClenachan L, Ferretti F and Baum JK (2012) From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conservation Letters 5(5): 349–359.
- Menezes A (2008) Mozambique: fishery country review Big number. Unpublished BNP working document.
- Meyer AA and Weerts S (2009) Trends in the Indian Ocean climatology due to anthropogenic induced global warming. South West Indian Ocean Fisheries Commission, Fourth Session, Stellenbosch (South Africa). 8 p.
- Monteiro CC (1973) Report B The beach-seine fishery of Inhassoro Mozambique. pp. 51–59 *In* de Freitas AJ (ed.) Portuguese research report 1972 — 1973: sub area 2 (Mozambique Channel).
- Mualeque D and Santos J (2011) Biology, fisheries and distribution of *Thryssa vitrirostris* (Gilchrist & Thompson 1908) and other Engraulidae along the coast of the Sofala Bank, western Indian Ocean. African Journal of Marine Science 33(1): 127–137.
- Olbers J and Fennessy S (2007) A retrospective assessment of the stock status of *Otolithes ruber* (Pisces: Sciaenidae) as bycatch on prawn trawlers from KwaZulu-Natal, South Africa. African Journal of Marine Science 29(2): 247–252.
- Pacule H and Baltazar L (1995) A fauna acompanhante de camarão no Banco de Sofala. Análise preliminar. RIP No. 20 (1), Instituto Nacional de Investigação Pesqueira, Maputo (Mozambique). 79–95 p.
- Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR and Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301(5635): 955–958.
- Pauly D (1992) Population dynamis of exploited fishes and crustaceans in Mozambique. In Use of Computers for Fisheries Research, 23 February to 15 March 1988, Instituto de Investigação Pesqueira, Maputo, Mozambique.
- Pauly D (1998) Rationale for reconstructing catch time series. EC Fisheries Cooperation Bulletin 11(2): 4–10.
- Pauly D (2007) The *Sea Around Us* project: documenting and communicating global fisheries impacts on marine ecosytems. Ambio 36(4): 290–295.
- Pauly D (2013) Does catch reflect abundance? Yes, it is a crucial signal. Nature 494: 303–306.

- Pauly D, Christensen V, Dalsgaard J, Froese R and Torres Jr. F (1998) Fishing down marine food webs. Science 279: 860–863.
- Pelgröm H and Sulemane M (1982) Regional and country developments Mozambique. pp. 139–140 *In* Fish by-catch Bonus from the sea: report of a technical consultation on shrimp by-catch utilization held in Georgetown (Guyana), October 27–30 1981. FAO/IDRC, Ottawa (Canada).
- Perry RI (2011) Potential impacts of climate change on marine wild capture fisheries: an update. The Journal of Agricultural Science 149: 63–75.
- Pierce SJ, Trerup M, Williams C, Tilley A, Marshall AD and Raba N (2008) Shark fishing in Mozambique: a preliminary assessment of artisanal fisheries. Eyes on the Horizon, Maputo (Mozambique). iv+23 p.
- Pinto M (2001) Gear selectivity for three by-catch species in the shallow-water shrimp trawl fishery at the Sofala Bank, Mozambique. WIOMSA Book Series 1: 489–506.
- Pörtner HO and Peck MA (2010) Climate change effects on fishes and fisheries: towards cause-and-effect understanding. Journal of Fish Biology 77(8): 1745–1779.
- Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WW, Choat JH, Cornish AS, Fennessy ST, Ferreira BP and Heemstra PC (2013) Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish and Fisheries 14(2): 119–136.
- Schultz N (1989) Programa dos recursos costeiros de peixe do Banco Sofala. Relatório 9, Instituto Nacional de Investigação Pesqueira, Maputo (Mozambique).
- Schultz N (1992) Preliminary investigations on the population dynamics of *Otolithes ruber* (Sciaenidae) on Sofala Bank, Mozambique. pp. 41–49 *In* Pauly D (ed.) Population dynamics of exploited fishes and crustaceans in Mozambique: contributions from a course on the "Use of Computers for Fisheries Research", held at the Instituto de Investigação Pesqueira, 23 February to 15 March 1988 in Maputo (Mozambique). Revista de Investigação Pesqueira (21).
- Silva C and Sousa MI (1988) Summary description of the marine fisheries and resources for Mozambique. *In* Sanders MJ, Sparre P and Venema SC (eds.), Proceedings of the workshop on the assessment of fishery resources in the southwest Indian Ocean. RAF/79/065/WP/41/88/E. Food and Agriculture Organization of the United Nations (FAO), United Nations Development Programme (UNDP), Albion (Mauritius).
- Smith D (2013) Chinese appetite for shark fin soup devastating Mozambique coastline. The Guardian, edition of February 14, 2013.
- Sousa MI (1990) Informação sobre a fauna acompanhante de camarão da Baia de Maputo, de Janeiro/80 a Agosto/81. Relatório 14, Instituto Nacional de Investigação Pesqueira, Maputo (Mozambique).
- Sousa MI (1992) Seasonal growth of five commercially important fishes at Sofala Bank, Mozambique. p. 79- 97. *In* Pauly D (ed.) Population dynamics of exploited fishes and crustaceans in Mozambique: Revista de Investigação Pesqueira Maputo No. 21.
- Torstensen E and Pacule H (1992) Stock assessment of Haliporoides triarthurus (Fam. Solesoceridae) off Mozambique: a preliminary analysis. Population dynamics of exploited fishes and crustaceans in Mozambique. Revista de Investigação Pesqueira 21. 14- 28 p.
- van der Elst R, Everett B, Jiddawi N, Mwatha G, Afonso PS and Boulle D (2005) Fish, fishers and fisheries of the Western Indian Ocean: their diversity and status. A preliminary assessment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1826): 263–284.
- Wielgus J, Zeller D, Caicedo-Herrera D and Sumaila UR (2010) Estimation of fisheries removals and primary economic impact of the small-scale and industrial marine fisheries in Colombia. Marine Policy 34: 506–513.
- Zeller D, Booth S, Davis G and Pauly D (2007) Re-estimation of small-scale fishery catches for U.S. flag-associated island areas in the western Pacific: the last 50 years. Fishery Bulletin 105(2): 266–277.

Appendix Table A1. Mozambique common species in capture fisheries by sector.

Equily	Scientific name	Species in capture lisiteries	on name	Small_scale	Indust	Discard
railiiy	Scientific fiame	English	Local (Portuguese)	_SINAII-SCAIE	mausi.	Discaru
Crustaceans		English	Local (I of luguese)			
Aristeidae	Aristeus antennatus	Blue and red shrimp	alistado/gamba rosada		\checkmark	~
/ instendide	A virilis	Stout red shrimp	gamba vermelho forte		\checkmark	\checkmark
	Aristaeonsis edwardsianus	Scarlet shrimn	gamba carabineira		\checkmark	~
	Aristacopsis edwardsiands	Ciant camba prown	gamba vormolba			
Convenidos	Chassen massherseni	Dialit gamba prawii	gamba vermena		•	•
Geryonidae	Chaceon macpherson	Pink geryon	caranguejo de profundidade		v	v
Nephropidae	Nephropsis stewarti	Indian ocean lobsterette	lagostim indiano		V	v
	Metanephrops andamanicus	Andaman lobster	lagostim comum		✓	✓
	M. mozambicus	African lobster	lagostim		\checkmark	\checkmark
Palinuridae	Panulirus versicolor	Painted rock lobster	lagosta pintada	\checkmark		\checkmark
	P. ornatus	Coral crayfish	lagosta costeira	\checkmark	\checkmark	\checkmark
	P. homarus	Scalloped spiny lobster	lagosta escamosa	\checkmark	\checkmark	\checkmark
	P. delagoge	Natal spiny lobster	lagosta de profundidae	\checkmark	\checkmark	\checkmark
Penaeidae	Fenneronengeus indicus	Indian white prawn	camarão branco	\checkmark	\checkmark	\checkmark
rendendde	Metanengeus monoceros	Speckled shrimp	camarão castanho	1	1	1
	M stobbingi	Deregrine chrimp	canarao castanno	•	•	•
		Peregrine similip	~		/	/
	Penaeopsis balssi	Scythe shrimp	camarao foice		v .	v .
	Penaeus monodon	Giant tiger prawn	camarão tigre gigante	\checkmark	\checkmark	\checkmark
	P. japonicus	Kuruma shrimp	camarão flor	\checkmark	\checkmark	\checkmark
	P. latisulcatus	Western king prawn	camarão real		\checkmark	\checkmark
	P. semisulcatus	Green tiger prawn	camarão tigre	\checkmark	\checkmark	\checkmark
Portunidae	Scylla serrata	Green mangrove crab	carangueio do mangal	\checkmark		\checkmark
	Portunus sanauinolentus	Three-snot swimming crab	carangueio sangrador	1	\checkmark	1
Sorgostidoo	A cotos oruthraous	Trivakibini pasto shrimp	camarão mundoho	•	•	•
Selencert	ALELES ELYLIIUEUS	Isivakiiiiii paste siiriiip		v	/	v
Solenoceridae	Hullporolaes triarthrus	Knite shrimp	gamba rosa		✓	
Bivalves			A C.			
Veneridae	Eumarcia paupercula	Beaked clam	ameijoa fina	√		√
	Meretrix meretrix	Asiatic hard clam	améijoa dura	✓		
Cephalopods			<u>.</u>			
Octopodidae	Octopus macropus	White spotted octopus	polvo manchado	\checkmark		√.
Sepiidae	Sepia pharaonis	Pharaoh cuttlefish	choco tigre	√		
Finfish						
Acanthuridae	Acanthurus leucosternon	surgeonfish	cirurgião poeirento	\checkmark		\checkmark
Acropomatidae	Neoscombrops cynodon	Silver splitfin	maconde sombreado	\checkmark		\checkmark
Anguillidae	Anauilla mossamhica	African longfin eel	enguia mocambicana	\checkmark		\checkmark
/ inguinade	A bangalansis labiata	African mottled col	onguia africana			
	A. bengulensis lubiulu	Ciant mothed col		•		•
	A. marmorata	Glant mottled eel	engula gigante	•		v
Ariidae	Plicofollis dussumieri	Blacktip sea catfish	bagre	V		v
Atherinidae	Hypoatherina temminckii	Samoan silversides	rei samoano	✓		✓
Balistidae	Rhinecanthus rectangulus	Wedge-tail triggerfish	porco rectangular	\checkmark		\checkmark
Belonidae	Ablennes hians	Flat needlefish	agulha lisa	\checkmark		\checkmark
Carangidae	Alepes djedaba	Shrimp scad	xaréu camaroneiro	\checkmark		\checkmark
0	Decapterus russelli	Indian scad	carapau	\checkmark		\checkmark
	D macrosoma	Shortfin scad	caranau harhatana	\checkmark		\checkmark
	Solar crumononhthalmus	Pig ovo cood	carapau proto			
	Setur crumenopricinamas	Dig-eye scau		•		•
• • • • • •	Carangolaes malabaricus	Horse mackerel	malabar cavalla	v	,	v
Centrophoridae	Centrophorus moluccensis	Smallfin gulper shark	lixa barbatana curta	✓	\checkmark	✓
Chirocentridae	Chirocentrus nudus	Whitefin wolf herring	machope espinhoso	\checkmark		\checkmark
Clupeidae	Hilsa kelee	Kelee shad	magumba	\checkmark		\checkmark
Clupeidae	Herklotsichthys quadrimaculatus	bluestripe herring	sardinha banda azul	\checkmark		\checkmark
•	Sardinella albella	White sardinella	sardinha branca	\checkmark		\checkmark
	S aibhosa	Gold strine sardinella	sardinha dourada	\checkmark		\checkmark
	Ballong ditchalg	Indian pollon	sardinia do indico	1		1
Droponoidee	Drongno longimene	Concorting fich	anvada concertine	•		•
prepaneidae		Concertina Tish	enxada concertina	v		v
Engraulidae	inryssa vitrirostris	Urangemouth anchovy	ocares	v ,		V
	T. setirostris	Longjaw thryssa	ocar cornudo	\checkmark		\checkmark
	Encrasicholina heteroloba	Shorthead anchovy	anchoveta aduaneira	\checkmark		\checkmark
Gerreidae	Gerres filamentosus	Whipfin silver-biddy	melanúria filamentosa	\checkmark		\checkmark
Haemulidae	Pomadasys kaakan	Javelin grunter	peixe pedra	\checkmark		\checkmark
	P. maculatus	Saddle grunt	gonguri	\checkmark		\checkmark
	D olivacous	Olive grupt	roncador oliva	./	./	
	n. Unvuccus Diactorhinchus flavomasulatus	Lomonfich		v	•	•
ا- ا- ا		Lemonius di manulir			*	v
iscioprioridae	kujika dudax	Surpeo mariin	espadim raiado		×	v
	Istiompax indica	Black marlin	espadim negro		\checkmark	\checkmark
	Istiophorus platypterus	Indo-pacific sailfish	veleiro		\checkmark	\checkmark
Leiognathidae	Leiognathus equulus	Common ponyfish	patana comum	\checkmark		\checkmark
-	Gazza minuta	Toothpony	sabonete dentuco	\checkmark		\checkmark
	Secutor insidiator	Pugnose ponyfish	chita boxeira	\checkmark		\checkmark
Lothrinidaa	Lothrinus lontion	Podenot omnoror	ladrão do lontoioulos	./	./	•
Letinininge		neuspot emperor		v	v	v

Appendix Table 1. Mozambique common species in capture fisheries by sector (continued).

Family	Scientific name	Comm	on name	Small-scale	Indust.	Discard
,	e cicilit, i cilitaria	English	Local (Portuguese)			
	L. borbonicus	Snubnose emperor	xegugo		\checkmark	
Lutjanidae	Lutjanus sanguineus	Humphead snapper	pargo vermelhão	\checkmark	\checkmark	\checkmark
	L. fulviflamma	Dory snapper	thana		\checkmark	
Mullidae	Upeneus vittatus	Yellowstriped goatfish	salmonete	\checkmark	\checkmark	\checkmark
	U. japonicus	Bensasi goatfish	salmonete bensasi		\checkmark	\checkmark
Mugilidae	Chelon macrolepis	Largescale mullet	tainha godé	\checkmark		\checkmark
Muraenesocidae	Muraenesox bagio	Common pike conger	enguia/safio comum	\checkmark		\checkmark
Nemipteridae	Nemipterus bipunctatus	Delagoa threadfin bream	baga delagoa		\checkmark	\checkmark
Paralichthyidae	Pseudorhombus natalensis	Natal flounder	areeiro		\checkmark	\checkmark
Polynemidae	Polydactylus sextarius	Blackspot threadfin	barbudo de mancha	\checkmark	\checkmark	\checkmark
Scaridae	Scarus ghobban	Yellowscale parrotfish	papagaio de escamas amarelas	\checkmark	\checkmark	\checkmark
	l entoscarus vaiaiensis	Marbled parrotfish	lundu		✓	√
Sciaenidae	Otolithes ruher	Tigertooth croaker	corvina	\checkmark	~	\checkmark
Schermade	Johnius amhlycenhalus	Bearded croaker	corvina	\checkmark	~	\checkmark
	I dussumieri	Sin croaker	macujana de barba	\checkmark	\checkmark	\checkmark
	Aravrosomus hololenidotus	Southern meagre	corvina real	\checkmark	\checkmark	\checkmark
Scombridae	Rastrelliger kanggurta	Indian mackerel	cavala	\checkmark	\checkmark	\checkmark
0000000000000	Scomberomorus commerson	Narrow-barred spanish	serra			
		mackerel		\checkmark	\checkmark	\checkmark
	Thunnus albacares	Yellowfin tuna	albacora	\checkmark	\checkmark	\checkmark
	T.alalunga	Albacore	voador	\checkmark	\checkmark	\checkmark
	T. obesus	Bigeye tuna	patudo	\checkmark	\checkmark	\checkmark
	Katsuwonus pelamis	Skipjack tuna	gaiado	\checkmark	\checkmark	\checkmark
Serranidae	Gracila albomarginata	White-edged grouper	garoupa bordo branco	\checkmark	\checkmark	\checkmark
	Epinephelus andersoni	Catface grouper	garoupa gato	\checkmark	\checkmark	\checkmark
	E. tukula	Potato bass	garoupa batata	\checkmark	\checkmark	\checkmark
Siganidae	Siganus canaliculatus	White-spotted spinefoot	babi		\checkmark	\checkmark
Sillaginidae	Sillago sihama	Silver sillago	pescadinha comum	\checkmark		\checkmark
Sparidae	Chrysoblephus puniceus	Slinger seabream	marreco	\checkmark		\checkmark
	C. gibbiceps	Red stumpnose seabream	marreco		\checkmark	\checkmark
	Crenidens crenidens	Karanteen seabream	esparo	\checkmark		
	Dentex macrophthalmus	Large-eye dentex	cachucho		\checkmark	\checkmark
Sphyraenidae	<i>Sphyraena</i> spp.	Barracuda	bicuda	\checkmark	\checkmark	\checkmark
Synodontidae	Saurida undosquamis	Brushtooth lizardfish	mbolopfuma	\checkmark	\checkmark	\checkmark
Trichiuridae	Trichiurus lepturus	Largehead hairtail	peixe fita	\checkmark	✓	\checkmark
Xiphiidae	Xiphias gladius	Swordfish	espadarte		✓	\checkmark
Sharks, rays and	skates	Crowneefsherel				
Carcharninidae	Curcharninas ambiymynchos	Bull shark		*		/
	C. limbatus	Bull Slidik Blacktin chark	Marracho macuira	*		v
	C. minibulus	DidCKUP Stidik	Marracha da Milharta	•		
	C. plumbeus	Sallubal Silark	Marracho tigro	v		
	Negaprion acutidans	Sicklofin Jomon shark	limão foicador	v ./		
	Trigonodon obosus	Whitetin roof chark	Marracho do covas	v ./		
Dasvatidae	Dasvatis kuhlii	Bluespotted stingray	lige ponteado			
Dasyatidae	D microns	Smalleve stingray	oge ponteado	· ~		
	Himantura cf. uarnak	Honeycomb stingray	Burá alveolado	· ~		
Hemigaleidae	Heminristis elongata	Snaggletooth shark	Tubarão doninha	✓		
Mohulidae	Manta hirostris	Manta	lamanta gigante	√		
Myliohatidae	Aetohatus narinari	Spotted eagle ray	Ratau nonteado			
Rhinidae	Rhina ancylostoma	Bowmouth guitarfish		✓		
Rhynchohatidae	Rhynchohatus diiddensis	Giant guitarfish		~		
Snhvrnidae	Snhvrna lewini	Scalloned hammerhead	Tubarão martelo comum	· ✓		
opinymuuc	S zvagena	Smooth hammerhead shark	tubarão martelo liso	✓		\checkmark
Stegostomatidae	Steaostoma fasciatum	Zehra shark		✓		

 Stegostomatude Stegostomu Jasciatum
 Zebra Shark

 'V' indicates that capture of this species contributes significantly to the total catch.

 Sources: Silva and Sousa (1988); Pauly (1992); Sousa (1992); Abdula (1998); Lee et al. (1999); de Boer et al. (2001); IIP (2001–2010); Motta et al. (2002);

 Kelleher (2005); Béné et al. (2007); FAO and WorldFish Center (2008); Jacquet et al. (2010); www.fishbase.org; www.sealifebase.org; www.marinespecies.org, http://species-identification.org.

FAU.	reported lan	unigs (t).		-	
Year	Industrial	Discards	Small- scale	Total reconstructed catches	FAO reported landings
1950	3,300	-	51,627	54,927	7,800
1951	3,300	-	52,005	55,305	8,200
1952	3,300	-	52,760	56,060	8,000
1953	3,300	-	53,516	56,816	7,800
1954	3,300	-	54,272	57,572	7,700
1955	3,300	-	55,027	58,327	9,300
1956	3,300	-	55,783	59,083	9,300
1957	4,100	-	56,538	60,638	11,500
1958	4,100	1,450	57,294	62,844	12,100
1959	4,700	1,160	58,050	63,910	12,700
1960	3,900	1,160	59,309	64,369	11,900
1961	3,285	1,380	60,785	65,450	11,300
1962	3,256	1,186	62,262	66,704	11,300
1963	3,425	1,122	63,738	68,285	12,000
1964	4,428	1,282	65,214	70,924	12,400
1965	4,181	1,621	66,690	72,492	14,200
1966	5,347	2,955	71,007	79,309	15,300
1967	5,047	3,007	75,447	83,501	15,000
1968	5,907	3,103	80,010	89,020	15,700
1969	7,328	3,263	84,696	95,287	17,000
1970	7,934	3,271	89,505	100,/10	17,600
19/1	10,523	7,407	96,459	114,389	20,400
1972	10,513	7,798	103,671	121,982	20,400
1973	13,538	9,982	111,141	134,661	23,300
1974	15,895	17,609	118,869	152,373	25,660
1975	11,030	12,583	120,854	151,073	22,490
1970	15,895	18,850	132,182	104,925	24,900
1070	15,390	15,620	133,384	104,001	23,950
1970	29,140	20,084	130,045	100,475	22,940
1000	21,303	24 997	147,443	205 604	20,150
1001	24,900	25 / 70	143,907	203,034	30,330
1982	23,055	28 969	1/18 / 65	204,722	3/ 680
1983	23,304	30 469	145 720	200,510	37 516
1984	20 734	21 491	142 871	185 096	31 836
1985	23.002	23.842	139,921	186,765	33,306
1986	29.566	41,233	136.875	207.674	38.671
1987	31.207	41.538	133.738	206.482	36.321
1988	32,075	44,117	130,512	206,705	32,185
1989	27,841	35,064	130,221	193,126	27,560
1990	31,473	37,364	129,754	198,591	32,919
1991	26,856	40,145	129,108	196,109	25,536
1992	30,899	27,329	128,277	186,505	27,808
1993	20,066	40,046	127,256	187,368	18,506
1994	23,673	35,959	126,042	185,674	22,531
1995	22,568	37,012	124,630	184,210	21,741
1996	20,993	35,845	121,182	178,020	29,341
1997	18,840	40,072	117,622	176,534	25,658
1998	16,701	34,112	118,847	169,660	21,010
1999	15,295	31,766	119,508	166,569	21,852
2000	13,723	30,849	119,613	164,185	22,198
2001	13,425	30,659	116,042	160,126	21,340
2002	12,685	29,574	112,224	154,483	20,545
2003	12,134	25,933	104,503	142,570	76,926
2004	11,450	26,231	97,384	135,065	71,828
2005	13,257	29,475	93,142	135,874	71,006
2006	11,909	26,111	103,182	141,202	75,882
2007	10,494	24,165	93,056	127,715	68,188
2008	8,382	19,485	95,490	123,357	93,415
2009	1,/24	18,419	98,009	124,152	105,/34
2010	9,974	20,051	TU1,010	12/,901	117,020

Appendix Table A2. Annual reconstructed catches by sector, and FAO reported landings (t).

Appe	ndix Tabl	e A3. Recon	nstructed ca	atches (t) gro	ouped by the	seven most i	mportant ta	ixa.
Year	Clupeidae	Engraulidae	Penaeidae	Carangidae	Haemulidae	Sciaenidae	Lethrinidae	Others
1950	6,389	5,115	2,510	4,071	5,543	1,140	4,445	25,716
1951	6,439	5,155	2,508	4,103	5,586	1,149	4,480	25,884
1952	6,530	5,228	2,559	4,161	5,665	1,165	4,543	26,209
1953	6,621	5,300	2,610	4,219	5,744	1,181	4,607	26,534
1954	6,713	5,374	2,656	4,277	5,824	1,197	4,671	26,861
1955	6,822	5,461	2,611	4,347	5,918	1,217	4,746	27,204
1956	6,915	5,536	2,651	4,406	5,999	1,233	4,811	27,532
1957	7,022	5,622	2,617	4,474	6,092	1,253	4,886	28,673
1958	7,154	5,742	3,179	4,546	6,231	1,645	4,955	29,392
1959	7,240	5,808	3,109	4,604	6,301	1,587	5,019	30,242
1960	7,395	5,932	3,176	4,702	6,435	1,615	5,127	29,988
1961	7,580	6,082	3,352	4,818	6,600	1,704	5,252	30,062
1962	7,761	6,225	3,329	4,935	6,753	1,687	5,381	30,633
1963	7,908	6,342	3,480	5,029	6,880	1,696	5,484	31,466
1964	8,121	6,514	3,536	5,164	7,067	1,775	5,630	33,116
1965	8,327	6,683	3,678	5,293	7,252	1,898	5,768	33,592
1966	8,893	7,149	4,379	5,642	7,766	2,339	6,141	37,000
1967	9,440	7,588	4,633	5,990	8,241	2,450	6,521	38,638
1968	10,002	8,039	4,915	6,347	8,731	2,575	6,911	41,500
1969	10,581	8,503	5,225	6,715	9,236	2,718	7,311	44,997
1970	11,173	8,977	5,484	7,092	9,749	2,826	7,722	47,686
1971	12,106	9,766	7,434	7,651	10,630	4,046	8,306	54,449
1972	13,012	10,495	7,971	8,226	11,423	4,307	8,931	57,618
1973	13,979	11,290	9,202	8,823	12,298	5,036	9,569	64,463
1974	15,303	12,426	12,653	9,602	13,099	7,215	10,016	/2,060
1975	16,380	13,239	11,351	10,331	13,406	6,127	10,445	69,793
1976	17,436	14,146	14,070	10,951	13,854	7,912	10,656	75,900
1977	17,742	14,348	12,604	11,183	13,489	6,858	10,527	77,849
1978	18,605	15,033	12,857	11,738	13,591	6,864	10,667	99,118
1979	20,038	16,186	13,640	12,645	14,070	7,268	11,083	92,091
1980	20,493	16,743	21,240	12,771	14,253	12,298	10,691	97,204
1000	20,544	10,015	20,440	12,005	13,005	12,050	10,229	96,757
1002	21,249	17,270	10,224	12,514	13,495	10,591	10,577	90,295
1001	21,140	16 707	1/,544	12,232	11 067	2 2 10	9,940	90,130
1984	20,750	16 7/17	14,805	12 983	11 / 01	9 081	9,407	91 683
1986	20,030	17 051	17 1/19	12,505	11 50/	13 186	8 5 8 8	106 397
1987	20,057	16.830	17,143	12,505	10 899	13,100	8 136	107,097
1988	20,300	16 640	17 288	12,755	10,000	13 717	7 674	108,095
1989	20,236	16 516	15 810	12,626	9 735	11 700	7 402	99 100
1990	20.328	16.620	16,965	12,658	9,431	12,496	7.096	102,997
1991	20.558	16.831	18,221	12,782	9,182	13,230	6.848	98,459
1992	20.318	16.519	17.173	12.732	8.340	10.105	6.557	94.762
1993	20.565	16.861	18.435	12,765	8.444	13.869	6.232	90,197
1994	20,609	16,856	17,689	12,828	7,945	12,835	5,982	90,929
1995	20,569	16,834	18,793	12,793	7,575	13,096	5,677	88,873
1996	20,300	16,607	18,286	12,632	7,076	12,751	5,327	85,041
1997	19,933	16,356	20,229	12,362	6,738	13,762	4,937	82,217
1998	20,158	16,477	19,173	12,556	6,261	12,284	4,767	77,983
1999	20,453	16,689	19,362	12,764	5,906	11,739	4,588	75,067
2000	20,459	16,685	19,880	12,775	5,528	11,507	4,335	73,016
2001	20,121	16,413	19,801	12,562	5,109	11,398	4,012	70,710
2002	19,556	15,950	19,380	12,211	4,637	11,021	3,663	68,064
2003	18,483	15,055	17,956	11,558	4,017	9,902	3,250	62,348
2004	17,852	14,552	14,834	11,153	3,919	9,866	3,134	59,755
2005	17,305	14,147	13,860	10,777	3,932	10,594	3,021	62,237
2006	18,943	15,425	11,739	11,850	4,102	10,030	3,333	65,783
2007	17,200	14,010	9,321	10,756	3,739	9,223	3,024	60,442
2008	17,508	14,210	8,778	10,991	3,638	8,086	3,099	57,048
2009	17,866	14,486	8,538	11,228	3,664	7,878	3,169	57,324
2010	19,354	15.694	10.726	12.163	3.972	8.560	3.432	64.001