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DIRECTOR’S FOREWORD 

This report is the first publication of the Sea Around Us Project focusing on global warming and 

its effects on marine fisheries.  It is therefore a report on methodology: we had to first develop 

methodological approaches before results could be presented. 

 

The first contribution in this report describes a new approach and software for simulating the 

widely documented poleward movement of marine fishes and invertebrates in response to 

warming oceans.  The software for simulating these movements implements a model, largely 

driven by the temperature changes predicted for the next decades by coupled atmosphere-ocean 

models, which considers a moderately large number of processes (reproduction, survival, 

migration, etc.) and features of the organisms in question (affinities to certain habitats, depth 

ranges, etc.). However, the model was designed such that it would be straightforward to 

parameterize, at least for 1,500+ species and higher taxa used by the Food and Agriculture 

Organization of the United Nations (FAO) to reports on global marine fisheries statistics, and for 

all of which the Sea Around Us Project has basic information, including detailed distribution 

range maps. 

 

Thus, the first paper in this report will serve a starting point for several planned articles on global 

warming effects on marine communities and fisheries, with the model at its core being gradually 

modified and improved as applications are completed. 

 

The second and third contributions in this report deal with the distribution range maps of marine 

taxa used by the model in the first. Thus, they propose a number of simple adjustments which 

help take seasonality and other modifying factors into account, both when generating present 

distribution range maps, and when shifting them poleward using the model mentioned above. 

 

The projections that we hope to generate, using these data and models, will obviously not be the 

last word on the poleward migration of marine fishes and invertebrates. However, because they 

cover a set of globally important species, they will enable the Sea Around Us Project to contribute 

in a major way to debates on the possible impacts of global warming on marine fisheries and 

biodiversity, a key environmental issue for the next decades. 

 
 
 
Daniel Pauly 
Director, UBC Fisheries Centre 
4 January 2008 
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LIST OF ACRONYMS 

Acronym or 
variable 

Definition or description (dimension)  

Ai Relative abundance in cell i 
a Southern boundary of the annual and winter distribution range (coordinate) 
AS Actual shift in the distribution range 
AvgS Latitudinal shift of centroid in summer (distance) 
AvgS’ Latitudinal shift of centroid in winter (distance) 
b Southern boundary of the summer distribution range (coordinate) 
c' Constant for calculating the intrinsic rate of population increase 
c Centroid of the annual distribution range (coordinate) 
C (Annual) Latitudinal position of the centroid of species’ annual average relative 

distribution (coordinate) 
CAi,t Absolute coral abundance at grid cell (30’ x 30’) i and time (year) t (Area) 
CM2.1 Coupled Model, version 2.1 
 Cs’ Latitudinal position of the centroid of species’ summer distribution 

(coordinate) 
 Cw’ Latitudinal position of the centroid of species’ winter distribution (coordinate) 
CS’ Actual shift in centroid of the distribution range (distance) 
CSs’ Maximum potential shift in centroid’s latitudinal positions in summer 

(distance) 
CSw’ Maximum potential shift in centroid’s latitudinal positions in winter 

(distance) 
D Diffusion coefficient 
d Northern boundary of the winter distribution range (coordinate) 
DS Ratio of future to current habitat suitability 
Dep Depth (length) 
Distij Distance between two adjacent cells (length) 
DM The Developmental type of larvae 
e Northern boundary of the annual and summer distribution range (coordinate) 
E Emigration of animals from a cell (relative abundance) 
Er Radius of the Earth (length) 
G Intrinsic population growth (time-1) 
GFDL Geophysical Fluid Dynamics Laboratory 
GR Minimum grid resolution (length) 
H Habitat types 
I Net adult migration (relative abundance) 
Ice Sea ice coverage (Area) 
Iji Net migrated adults at cell i from surrounding cells j (relative abundance) 
K Von Bertalanffy growth parameter (time-1) 
k Scaling factor representing the sensitivity of the calculated emigration rate to 

changes in environmental suitability 
KCi Population carrying capacity at cell i (relative abundance) 
KR Carrying capacity ratio of the destination cell 
Lat Latitude (coordinate) 
Lav Larval abundance (relative abundance) 
LC Latitude at the centre of the grid cell i where the specific area of coral occurs 

(coordinate) 
L Settled larvae at cell i from surrounding cells j (relative abundance) 
LU Upper latitudinal limit (coordinate) 
LL Lower latitudinal limit (coordinate) 
Lon Longitude (coordinate) 
M Natural mortality rate (time-1) 
mi The instantaneous movement rate for randomly moving organisms to 

emigrate across each cell boundary (time-1) 
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LIST OF ACRONYMS (CON’T) 

 
Acronym or 
variable 

Definition or description (dimension)  

mi
(base) Movement rate in the absence of any gradient (time-1) 

MGSVA Mariano Global Surface Velocity Analysis 
MI Motility Index 
MP (Annual) Latitudinal position of the mid-point of the annual distribution (coordinate) 
MPS Mid-point between the centroid and the southern bound of the annual 

distribution (coordinate) 
MPW Mid-point between the centroid and the northern bound of the annual 

distribution (coordinate) 
MPS’ Latitudinal position of the mid-point in summer (coordinate) 
MPW’ Latitudinal position of the mid-point in winter (coordinate) 
Morti,t Dispersed animals that die at cell i and time step t (relative abundance) 
MS’ Actual shift in the latitudinal position of the mid-point (distance) 
MSs’ Maximum potential shift in the latitudinal position of the mid-point in 

summer (distance) 
MSw’ Maximum potential shift in the latitudinal position of the mid-point in winter 
N or n Number of spatial cells where the species occurs (count) 
NL’ Latitude of the northern bound in winter (coordinate) 
NL Latitude of the original northern bound (coordinate) 
NOAA National Oceanic and Atmospheric Administration 
P Habitat suitability 
PLD Pelagic larval dispersal (time) 
r Intrinsic rate of population increase (time-1) 
R Rate of larval production (time-1) 
RE Rate of the re-entrance of the emigrated animals to the source cells (time-1) 
S Larval settlement rate (time-1) 
Skew Degree of skewness 
SL’  Latitude of the southern bound in summer (coordinate) 
SL Latitude of the original southern bound (coordinate) 
SST Sea Surface Temperature (temperature) 
T Average water temperature in the animal’s range (temperature) 
TG Function to calculate the temperature-gradient index at the upper and lower 

latitudinal limits 
Ta Optimal preferred temperature of a species (temperature) 
TPP Temperature Preference Profile 
u East-west current velocity (length time-1) 
v North-south current velocity (length time-1) 
Vi Adult dispersal rate (time-1) 
Winf Asymptotic weight (weight) 
x Length of a cell (length) 
δ2 Standard deviation of the normal distribution function f 
λ Instantaneous rate of larval mortality and settlement (time-1) 
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CHAPTER 1 

 

DYNAMIC BIOCLIMATE ENVELOPE MODEL TO PREDICT CLIMATE-
INDUCED CHANGES IN DISTRIBUTION OF MARINE FISHES AND 

INVERTEBRATES1 
 

William W. L. Cheung, Vicky W.Y. Lam and Daniel Pauly 
 

Sea Around Us Project, Fisheries Centre, Aquatic Ecosystems Research Laboratory, 2202 Main 
Mall, The University of British Columbia, Vancouver, British Columbia, Canada. V6T 1Z4. 

 

ABSTRACT 

Global climate change is recognized as an important determining factor for the future 
distributions of marine organisms, notably fishes and invertebrates. Shifting of distribution range 
may affect global marine fisheries and have large socio-economic implications. However, global-
scale evaluation of the impact of climate change on marine species is lacking. In this paper, we 
develop a dynamic bioclimate envelope model to predict the effect of climate change on the 
distributions of marine species with emphasis on commercially exploited fishes and invertebrates. 
First, the model infers, for various species, bioclimate envelopes based on their current 
distribution. Bioclimate envelopes are defined by sea water temperature, bathymetry, habitats 
and distance from sea ice. Secondly, the model predicts the shifting of the bioclimate envelopes 
induced by changes in climate variables. Simultaneously, following the shifting of the bioclimate 
envelopes, the model simulates movement of relative abundance through changes in population 
growth, mortality, larval dispersal and adult movement. We test the model with several 
commercially exploited fish species with widely different biogeography. The model provides 
reasonable and robust predictions of future distribution ranges of the four species under different 
scenarios of sea water warming. Moreover, the predictions are robust to major model 
assumptions and parameter uncertainty. Using realistic climate change predictions from the 
NOAA/GFDL Coupled Model, this model will be used to evaluate impacts of climate change on 
global marine fisheries. 
  

INTRODUCTION 

There is ample evidence from empirical observations and climate models indicating that mean 
global temperatures have been increasing over the last 100 years (IPCC 2007). Global 
temperature has increased by over 0.6 oC since 1900 and it may continue to increase at a rate of 
around 0.2 oC per decade (IPCC 2007). Biological responses to this change have been observed in 
both terrestrial and marine biomes (Murawski 1993; Hughes 2000; McCarty 2001; Parmesan & 
Yohe 2003; Perry et al. 2005; Hobday et al. 2006). The responses include changes in physiology 
(e.g. productivity), geographic range and phenology at population, species, community and 
ecosystem levels (Hughes 2000; McCarty 2001). For instance, nearly two-thirds of marine fishes 
in the North Sea shifted in mean latitude or depth or both over 25 years as sea temperature 
increased (Perry et al. 2005). During the last century, annual growth rates for the juveniles of 
eight long-lived fish species in the southwest Pacific increased in shallow waters and decreased in 
deep waters where ocean warming and cooling occurred, respectively (Thresher et al 2007). This 
agrees with the quantitative model of fish physiology, which predicts increasing growth 
performance and fecundity in higher latitude and the converse in lower latitude as sea 

                                                 
1 Cited as: Cheung, W.W.L., Lam, V.W.Y., Pauly, D. 2008. Dynamic bioclimate envelope model to predict climate-induced 
changes in distribution of marine fishes and invertebrates, p. 5-50. In: Cheung, W.W.L, Lam, V.W.Y., Pauly, D. (eds.) 
Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. Fisheries Centre Research Report 
16(3). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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temperature increases (Pörtner et al. 2001). Moreover, global warming may increase 
extinction/extirpation risk of some populations and species (Pounds 2001; Thomas et al. 2004). 
It may also have large implications for communities and industries that depend on these marine 
species for food and income (Roessig 2004). Thus, predicting effects of climate change on marine 
species is important in understanding the overall impacts of such global changes on human 
society and ecosystem. 
 
Bioclimate envelope model has been widely used to predict the effects of climate change on the 
distribution range of terrestrial species (Pearson & Dawson 2003). A bioclimate envelope can be 
defined as a set of physical and biological conditions that are suitable to a given species. Such a 
bioclimate envelope is generally identified by studying the relationships between current species 
occurrences and biogeographical attributes using statistical methods (e.g. generalized additive 
model, Luoto et al. 2005) or artificial intelligence models (e.g. artificial neural network, Pearson 
et al. 2002). Thus, shifts in species distributions can be predicted by evaluating changes in 
bioclimate envelope under climate change scenarios. For instance, a bioclimate envelope model 
based on a genetic algorithm and museum specimens was used to predict distributional shifts of 
Mexican terrestrial faunas under global climate change scenarios (Peterson et al. 2002).  
 
Bioclimate envelope models are important tools to provide guidance for policy making (Hannah 
et al. 2002) although predictions from such models may be uncertain (Peason & Dawson 2003; 
Araújo et al. 2005; Araújo & New 2006; Lawler et al. 2006). Critiques of bioclimatic modelling 
are detailed by Pearson & Dawson (2003); they include the lack of consideration of biotic 
interactions, evolutionary change and species dispersal. Understanding these processes is 
important to a comprehensive evaluation of impacts of climate change on the marine ecosystem 
(Harley et al. 2006). However, bioclimate envelope models are among the best tools available to 
predict large scale potential ecological changes under climate change scenarios. Their applications 
are particularly appropriate at large spatial scale, as will be presented below. Also, model 
uncertainty can be reduced by examining results from multiple alternative models (Pearson & 
Dawson 2003). Thus, predictions from such models are useful in generating hypotheses of 
possible ecological impacts from climate change. 
 
Two global databases, i.e., that compiled by the Sea Around Us Project (Watson et al. 2004), and 
FishBase (Froese & Pauly 2007) provide most of the information needed for the development of a 
global bioclimate envelope model for commercially exploited marine species. This is important as 
predicting future responses to climate change in marine biomes lags behind those for terrestrial 
species. Specifically, application of a bioclimate envelope model to large marine ecosystem is 
limited. This is partly because of the general lack of large-scale biological, ecological and 
biogeographical data for most marine species. However, such data are made available from the 
aforementioned global databases. For instance, distributions of relative abundance of all 
commercially exploited marine species are available from the Sea Around Us Project (Close et al. 
2006). Combining such data with physical attributes such as global ocean temperature, 
bioclimate envelopes of the marine species could be inferred. These make it possible to construct 
bioclimate envelope models to predict impacts of climate change on all exploited marine species. 
 
This contribution documents a bioclimate envelope model that aims to predict the effects of 
global climate change on marine fishes and invertebrates. A major advance of the bioclimate 
envelope model presented in this contribution is the incorporation of population and dispersal 
dynamics for predicting impacts of climate change on distribution range. Such dynamics are 
important factors in determining biogeography of marine system under climate change scenarios 
(Pearson & Dawson 2003; Harley et al. 2006). Although our model does not explicitly deal with 
the effects of biological interactions and evolutionary changes (Pearson & Dawson 2003), we 
discuss the implications of these factors for the uncertainty of our model predictions. For the time 
being, we evaluate the performance of our model by using hypothetically generated climate data, 
as a first step to quantitatively evaluate the impacts of climate change on marine fishes and 
invertebrates. We then discuss how this approach will be applied to the study of likely effects of 
global changes to fisheries at a global scale. 
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METHODS 

We developed a simulation model to predict changes in global distributions of commercial species 
under different climate change scenarios. This model is essentially a bioclimate envelope model 
combined with dynamic dispersals of animals. The Sea Around Us Project uses the distribution of 
commercial species (fishes and invertebrates) to map marine fisheries (Watson et al. 2004). The 
distributions have all been recently improved by Close et al. (2006), Lam et al. (this vol.) and 
Pauly et al. (this vol.). The future distributions of these species were assumed to be predictable 
from changes in ocean temperature, ocean advections and habitats (coral and sea ice coverage). 
Details of the model are described in the following. 
 

Current species distributions 

Descriptions of current distribution of marine species are fundamental to predicting changes in 
species distributions. The Sea Around Us Project produced distribution maps of over 1,200 
commercially exploited fishes and invertebrates (www.seaaroundus.org). Each species’ 
distribution map is presented as potential relative abundance in 30’ latitude x 30’ longitude cells 
of the world ocean. The map was generated by a bio-climate model that predicts the suitability of 
each 30’ lat. x 30 long. cell to the studied species. Boundaries of each species’ distribution were 
delineated by the following information: (1) latitudinal range; (2) depth range; (3) affinity to 
certain habitats; (4) known distribution boundaries from published literature or experts’ 
knowledge, e.g., presence in a United Nations Food and Agriculture Organization (FAO) 
statistical area. Realistic assumptions were made on distributions of relative abundance within 
the above ecological limits. For instance, an ‘equatorial submergence’ filter was used to account 
for the tendency of demersal species to inhabit shallower waters in higher latitude (Ekman 1957; 
Close et al. 2006). It is emphasized that the Sea Around Us Project does not explicitly use 
temperature and primary production for any of the procedures discussed above. A description of 
the procedures to predict current species distributions are documented in Close et al. (2006). 
Lam et al. (this vol.) and Pauly et al. (this vol.) present the modifications required to represent the 
distribution of seasonally migrating fishes and latitudinal and longitudinal distribution 
asymmetry, respectively. 
 
Predicted current distributions of seven species: Nassau grouper (Epinephelus striatus, 
Epinephelidae), Small yellow croaker (Larimichthys polyactis, Sciaenidae), Polar cod 
(Boreogadus saida, Gadidae), Atlantic cod (Gadus morhua, Gadidae), Western Australian rock 
lobster (Panulirus Cygnus, Palinuridae), Antarctic toothfish (Dissostichus mawsoni, 
Nototheniidae), and summer and winter distributions of Australian ruff (Arripis georgianus, 
Australian ruff) were shown here as examples (Figure 1). These examples represent species with 
different life history and ecology, and from different geographic areas. We used these examples to 
illustrate the models described in this paper. 
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Model algorithms 

Calculating environmental preferences 

Profiles of affinity to environmental and climatic attributes (i.e., seawater temperature, depth, 
habitat-associations and distance from edge of sea ice) for each species were based on current 
distribution maps generated by the Sea Around Us Project using the methodology documented in 
Close et al. (2006). We assume that the predicted current distributions realistically depict the 
bioclimate envelopes preferred by the species. In this paper, bio-climate envelopes are defined by 
(a) sea water temperature; (b) bathymetry; (c) habitats and (d) distance from sea ice. For each of 
these four bioclimate attributes, we expressed a species’ preference to different attribute values by 
its relative abundance.  

a. Sea water temperature 

Distributions of marine ectothermic animals are strongly dependent on temperature, as these 
animals are limited by their insufficient capacity of circulation and ventilation under low and high 
temperature (Pörtner 2001). Physiological performance of marine invertebrates and fishes 
changes continuously from optimum level to outside their thermal tolerance limits (Frederich & 
Pörtner 2000; Pörtner 2001). Also, foraging theory predicts that animals will select areas where, 
eventually, their growth rates can be maximized (Stephens & Krebs 1986). As growth is strongly 
dependent on physiological performance (Pauly 1980; Elliott 1982; Regier et al. 1990), it is 
reasonable to assume that ectothermic animals tend to inhabit area within their optimal 
temperature range (Hughes & Grand 2000). Thus, current distributions of marine animals should 
depict, at least roughly, their temperature preference. 
 
We calculated the temperature preference profile (TPP) of each species by combining current sea 
temperature with species’ predicted distribution ranges, the latter being determined by the Sea 
Around Us Project algorithm (Close et al. 2006). We define TPP as the probability of occurrence 
of a species at different sea water temperatures. To infer TPP from the predicted distribution 
maps, firstly we converted the observed sea temperature data obtained from Met Office Hadley 
Centre observations datasets (http://hadobs.metoffice.com/hadisst/) to the 30’ x 30’ resolution 
of the Sea Around Us Project distribution maps. We overlaid the sea temperature over current 
distribution maps and calculated species’ relative abundance in different temperatures. We 
assume that relative abundances of demersal and benthopelagic species (e.g., Atlantic cod) 
depend mainly on annual sea bottom temperature while pelagic species (e.g. Atlantic herring) 
depend on seasonally-averaged (summer and winter) sea surface temperature (see Lam et al. this 
vol.). We examined the TPP of the studied species to ensure that temperature preference by each 
species is reasonable. Criteria for judging the acceptability of the temperature profiles include (1) 
whether the profile is approximately unimodal; and (2) the coefficient of variation of preferred 
temperature is less than 50%. Distribution maps that resulted in clearly multi-modal temperature 
profiles or a wide range of preferred temperature might be predicted inaccurately and were 
reviewed. Also, we assume a linear change in species preference (relative abundance) to water 
temperature between consecutive temperature classes (Figure 2). 

In some cases, sea-water temperature preference by a species is not uni-modal, i.e., there is more 
than one distinct peak of relative abundance in different temperatures (e.g., Atlantic cod and 
Western Australian rock lobster, Figure 2d and 2e). Physiological performance of marine 
ectotherms generally peaks at certain optimum temperature from where it declines to their 
thermal tolerance limits (Frederich & Pörtner 2000; Pörtner 2001). As we assume that each 
species distribution represents a single uniform distribution, we consider the multi-modal 
temperature preference distributions as artifacts which resulted from uncertainties of the original 
species distribution. As this may lead to unrealistic predictions of species’ responses to changes in 
sea temperature, we smoothed the TPP with running-mean to ensure that the distributions were 
generally uni-modal. To minimize distortion to the original temperature preference distribution, 
the number of temperature class averaged in the running mean calculation was increased from 3 
until a uni-modal distribution was obtained. In the case of Western Australian rock lobster, a 3-
temperature-classes running-mean is required to change the original bi-modal distribution to 
uni-modal (Figure 3). 
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Figure 2. Temperature Preference Profile (TPP) expressed as relative abundance in areas with 
different sea temperature of: (a) Nassau grouper, (b) Small yellow croaker, (c) Polar cod, (d) 
Atlantic cod, (e) Western Australian rock lobster, (f) Antarctic toothfish, (g) and (h) summer and 
winter distributions of Australian ruff. We assume linear changes in a species’ preference to sea 
water temperature between consecutive temperature classes (lines). 
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Figure 3. Temperature Preference Profile of Western Australian rock lobster: (a) original 
distribution, (b) smoothing by 3 temperature classes. 

 

b. Depth limits 
We assume that a species’ distribution is also limited indirectly by depth. Thus, there are lower 
and upper limits of water depth outside of which a species does not occur. Different levels of 
temperature, oxygen concentration, food availability and predation pressure exist at different 
water depths. Vertical distributions of marine fishes and invertebrates were suggested to be 
limited partly by these factors in both freshwater and marine environments (Matthews et al. 1985; 
Pihl et al. 1991; Orlowski 1999). Also, animals inhabiting extreme depth generally develop special 
morphological and physiological adaptations (Helfman et al. 1997). Thus, species that are 
adapted to surface waters cannot occur in deep water and conversely. These create limits to the 
range of water depth where different species occur.  
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We estimate lower and upper depth limits from species’ current distribution. The Sea Around Us 
Project algorithm uses depth limits as criteria to predict a species’ distribution. However, because 
of other physiological or ecological limitations (e.g., temperature) that restrict the distribution of 
the species, the current species distribution predicted by the Sea Around Us Project algorithm 
(Close et al. 2006) may not depict the extreme bathymetric limits of the species. Also, depth 
limits used by Close et al. (2006) were imprecise in most cases. Therefore, we accounted for the 
high uncertainty of the depth limits by widening them in the current species distribution by 100%.  
For instance, the original depth limits of Small yellow croaker used by Close et al. (2006) is 1 – 
105 m, but wider limits of 0.5 – 210 m were used in our model. We assume that a species would 
maintain its depth limits when its distribution changes as a result of global climate change. 
 

c. Habitats 
Each species is assigned an index of association to one or more of the four habitat types: coral 
reefs, estuaries, seamounts and other habitats. The index represents relative density of a species 
in the particular habitat. It was assigned based on qualitative descriptions of the ecology of the 
species from FishBase or other publications and literature (Close et al. 2006; Cheung et al. 2007). 
Distribution of relative abundance obtained from the Sea Around Us Project algorithm had been 
adjusted based on the habitat-association index and global distributions of the four habitat types 
(Close et al. 2006, Table 1). 
 

Table 1. Habitat categories for which global maps are available in the Sea Around Us Project. 
 
Categories Origin of global map Terms often used to describe 

these categories 
Estuary Alder (2003) Estuaries, mangroves, river mouth. 
Coral UNEP World Conservation 

Monitoring Centre (2005) 
Coral reef, coral, atoll, reef slope. 

Seamounts Kitchingman and Lai (2004) Seamounts. 
Other habitats --- Muddy/sandy/rocky bottom. 

 

d. Distance from sea ice 
Polar ecosystems, and distributions of their associated species, are largely shaped by the 
dynamics of sea ice (Longhurst 1981). In both the Arctic and Antarctic, primary productivity 
under and around sea ice is generally high. For instance, in the Antarctic, phytoplankton growth 
is enhanced by dynamics of mixed-layer of water affected by influx of lower salinity water from 
ice-melting. Sea ice cover also provides a habitat that allows for maximum utilization of sunlight 
and thus enhances primary production (Eicken 1992). Zooplankton such as krill (Euphasia 
superba) forage and take refuge under sea ice (Daly & Macaulay 1988; Brierley et al. 2002). The 
zooplanktons, in turn, form the basis of the foodweb which support fishes and mammals in polar 
ecosystems (Eicken 1992; Legendre et al. 1992; Longhurst 1981). Thus, polar fishes such as Arctic 
cod and Antarctic toothfish are physiologically adapted to polar environments (Farrell & 
Steffensen 2005) and generally range close to sea ice (Legendre et al. 1992; Fuiman et al. 2002). 
 
It is therefore reasonable to assume that polar species are partly dependent on the presence of   
sea ice at least at a certain distance. To be consistent with the current species distributions, which 
represent annual average (except for pelagic fishes), annual average sea ice distribution was used. 
In this study, we used average monthly ice extent (19179-1999) with its border defined by a 
minimum of 50% sea ice coverage. The sea ice data were obtained from the US National Snow & 
Ice Data Centre web site (http://nsidc.org/data/smmr_ssmi_ancillary/trends.html#gis) and 
processed by Kaschner (2004). We calculated the distance between the nearest sea ice and the 
centre of each 30’ lat. x 30’ long. cell. Overlaying species’ distribution from the Sea Around Us 
Project algorithm on maps of nearest distance from sea ice, we calculated polar species’ relative 
abundance at different distances from sea ice.  
 
In this study, we used a biogeographical definition of polar species (Møller et al. 2005), i.e., 
species that range mostly (≥ 75% of their relative abundance) within the Arctic or Antarctic were 
categorized as polar. Maps of the Arctic and Antarctic from Møller et al. (2005) were employed 
(Figure 4). A list of exploited polar fishes and invertebrates is shown in Appendix 1. 

 



 

 

13

 
 
Figure 4. Map of the Arctic and Antarctic (in grey), based on Møller et al. (2005). 

 

Dynamics of climate change-induced range shift 

We developed a model to predict climate change-induced shift in species distributions. Spatial 
and temporal dynamics of populations are assumed to be determined by larval and adult 
dispersals, immigration, intrinsic population growth and extirpation. The rates of these processes 
are dependent on the ‘carrying capacity’ in each area (30’ lat. x 30 long. cell). Here, carrying 
capacity is defined as the maximum relative abundance of a species in a cell. It is largely 
dependent on the environmental suitability of the cell to the species. All these processes are 
incorporated into the model. Since the model aims to predict changes in relative species 
distributions while accurate predictions of absolute changes in abundance are not necessary, we 
simplified the population dynamic models to reduce the number of required parameters that are 
otherwise unavailable for most of the studied species. Details of the population dynamic model, 
along with all the assumptions and simplifications, are reported in the following. 
 
Changes in relative abundance of a species in each 30’ lat. x 30’ long. cell (i) at each time step t 
can be expressed as: 
 

∑
=

++=
N

j

jijii
i ILG

dt

dA

1

 …1) 

 
where Ai is the relative abundance of cell i, G is the intrinsic population growth, and Lji and Iji are 
settled larvae and net migrated adults from surrounding cells j, respectively.  
 
Growth (G) 
We modelled intrinsic population growth through a logistic growth function (Hilborn & Walters 
1992):  
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A
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where r is intrinsic rate of population increase, Ai and KCi are the relative abundance and 
population carrying capacity at cell i, respectively. A major assumption of our model is that 
current species distributions calculated from the algorithm of Close et al. (2006) as modified by 
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Pauly et al. (this vol.) and Lam et al. (this vol.) are in equilibrium, and every spatial cell at time-
step (t) 0 is at its carrying capacity, i.e., KCi,t=0 = Ai,t=0 and, therefore, Gi, t=0 =0.  
 
We used an indirect method to approximately estimate intrinsic rate of population increase (r). 
Empirically estimated intrinsic rates of increase of most exploited marine species were not 
available because of a lack of time-series population data (e.g., abundance, catch rate). Therefore, 
we calculated r based on the estimated natural mortality rate (M): 
 

Mcr ⋅= '  …3) 
 
where c’ is a constant that commonly ranges between 1 and 3. Natural mortality rate was 
estimated from an empirical equation (Pauly 1980): 
 

)log(4687.0)log(6757.0)log(0824.04851.0 inf TKWM ⋅+⋅+⋅−−=  …4) 

 
where Winf is asymptotic weight, K is the von Bertalanffy growth parameter and T is the average 
water temperature in the animal’s range. Acknowledging the high uncertainty of r estimated from 
this method, we compared the simulation results obtained from a range of r to evaluate the 
sensitivity of our model to the uncertainty of the population growth rate. 
 
The carrying capacity of a cell varies positively with the habitat suitability to the studied species. 
As habitat in a cell (defined here by temperature, bathymetry, habitat types and ice-coverage) 
becomes more suitable for the animal, carrying capacity should also increase. Thus, in our model, 
carrying capacity KC in cell i is modified according to the change in habitat suitability (P) between 
time (t), i.e., 
 

t

t
tt
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P
KCKC 1
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+

+ ⋅=  …5) 

 
and 
 

)()()()( IcePHPDepPTPP ⋅⋅⋅=  …6) 

 
where T, Dep, H and Ice refer to temperature, bathymetry, habitat types and sea ice coverage, 
respectively.  
 
If an initially unoccupied spatial cell (A0 = KC0 = 0) or a cell without suitable habitat becomes 
suitable for the survival of a species as global climate changes, its new carrying capacity is 
assumed to be the average carrying capacity of other ‘occupied’ cells with similar habitat 
suitability. 
 
Spawning and larval dispersal (L) 
Immigration consists of two components: larval dispersal and migration of adults. We assume 
larval production (Lav) to be directly proportional to the relative abundance in a cell (i): 
  

ii ARLav ⋅=  …7) 

 
where R is an assumed rate of larval production. Our model does not have an explicit stock-
recruitment relationship. The main focus of the model is to simulate changes in cells’ carrying 
capacity and extent of dispersal by the species. The absolute amount of larval production affects 
only the rate at which carrying capacity level in a cell is being approached, and should not affect 
the general prediction by the model. On the other hand, we tested the sensitivity of the model 
outputs to this simplification by comparing model results obtained from a range of larval 
production rate (R). 
 
Our model calculates dispersal of larvae through ocean current and diffusion. We assume that 
pelagic larvae disperse passively from surrounding ‘source’ areas through ocean surface current 
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and diffusion. Thus, the magnitude of larval recruitment is dependent on pelagic larval duration 
(PLD), strength and direction of ocean currents and diffusivity. PLD, expressed in days, can be 
calculated from an empirical equation established from a meta-analysis of PLD from 72 species of 
fish and invertebrates (O’Connor et al. 2007):  
 

2
20 ))/(ln(283.0))/(ln(1368)ln( cc TTTTPLD ⋅−⋅−= β  …8a) 
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where T is sea surface temperature, Tc =15 oC, N is the number of spatial cells (i) where the 
species occurs. DM is the developmental type of larvae. DM is 0 or 1 for lecithotrophic (non-
feeding development) or planktotrophic (feeding development) larvae, respectively (O’Connor et 
al. 2007). Thus, PLD is shorter in areas where the sea water temperature is higher. On the other 
hand, PLD is longer when the average temperature over the entire occurrence range of a species is 
higher, reflecting its evolutionary adaptation to higher environmental temperature (O’Connor et 
al. 2007). 
 
Based on the calculated PLD and ocean current velocity data, the model calculates dispersal of 
pelagic larvae over time through diffusion and advection. Diffusion and advection of ocean 
current are important factors determining dispersal of pelagic larvae of marine organisms 
(Possingham & Roughgarden 1990; Gaylord & Gaines 2000; Bradbury & Snelgrove 2001; Gaines 
et al. 2003).  The temporal and spatial patterns of pelagic larval dispersal were modelled by a 
two-dimensional advection-diffusion equation (e.g., Sibert et al. 1999; Gaylord & Gaines 2000; 
Hundsdorfer & Verwer 2003):  
 

( ) ( ) LavNv
y

Lavu
xy

Lav
D

yx

Lav
D

xt

Lav
⋅−⋅

∂
∂

−⋅
∂
∂

−








∂
∂

∂
∂

+







∂

∂
∂
∂

=
∂

∂
λ  …9) 

 
where change in relative larvae abundance over time (∂Lav/∂t) is determined by diffusion (i.e., 
the first two terms on the right-hand side of eq. 9) and current-driven movements (i.e., the third 
and fourth terms of eq. 9). Diffusion is characterized by a diffusion parameter D, while advection 
is characterized by the two current velocity parameters (u, v) which describe the east-west and 
north-south current movement. Diffusion coefficient, expressed in m2 s-1, is assumed to be a 
function of length scale of the spatial grid: D = (1.1 x 10-4)�GR1.33 where GR is the minimum grid 
resolution (Nahas et al. 2003).  
 
Annual average current fields were obtained from the NOAA/GFDL Coupled Model. Thus, we 
implicitly assume that larvae remain within a single horizontal layer of the water column or are 
well mixed vertically in water of nearly constant depth. The instantaneous rate of larval mortality 
and settlement is represented by λ = M + S where M and S are the natural mortality and 
settlement rates of larvae, respectively. The default larval survival and larvae retention rate are 
0.15 day-1 and 0.2 day-1, respectively. Alternative values were used to test for the sensitivity of 
simulation results to these parameters. 
  
We employed a numerical solution of the partial differential equation (eq. 9) provided by Sibert & 
Fournier (1994). Basically, eq. 9 is solved using implicit alternating direction method (Press et al. 
1988). This method solves the partial differential equation for each direction (u and v) after half a 
time step sequentially (Figure 5). The implicit solution can be expressed as systems of linear 
equations with tridiagonal matrices of coefficients. Therefore, the 30’ x 30’ grid world map was 
firstly segregated into horizontal and vertical segments with consecutive sea cells. Movement of 
larvae from diffusion and advection was then calculated for each east-west and north-south 
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segment. The tridiagonal system of equations can be robustly solved by the recursive algorithm 
(Press et al. 1988) (see Appendix 3 and Sibert & Fournier 1993 for details of equations). 
  

 
Figure 5. Schematic diagram of a computational grid. The horizontal (u) and vertical (v) 
direction movements are solved separately at half a time step sequentially. 

 
A daily time step was used in simulating larval dispersal. The simulation time frame is 
determined by the calculated PLD from eq. 8. Displacement at each time step (∆x and ∆y) was 
assumed to be the distance between two adjacent cells (Distij), which is calculated by: 
 

ErLonLonLatLatLatLataDist jiijijij ⋅−⋅⋅+⋅= ))cos()cos()cos()sin()cos(sin( /2 …10) 

 
where Lat and Lon are the latitude and longitude of cells i and j, respectively; Er is the radius of 
the Earth (6378.2 km). 
 
In addition to average larval dispersal as described above, we also modelled extreme dispersal 
events. Here, extreme dispersal events refer to sporadic dispersal of larvae as a result of ocean 
advection anomalies. Such events may influence dispersal pattern and meta-population structure 
(Lockwood et al. 2002). In the model, extreme dispersal events are assumed to be random events 
and are represented by a doubling of the average dispersal distance. We assume that extreme 
dispersal events occur once every 5 years, but alternative values were used to test the sensitivity of 
model outputs to this parameter. 
 
Net adult migration (I)  
In the model, animals disperse by actively swimming to surrounding areas. Animals were 
considered to have reached a cell by active dispersal if the dispersal distance in a simulation time-
step was greater than the nearest distance between source and destination cells. Distance 
travelled by active dispersal from a source cell was calculated from a dispersal rate (km�year-1). 
Generally, species that are pelagic, large-bodied, fusiform-shaped and metabolically more active 
have higher dispersal rate. The aspect ratio of a fish’s caudal fin (i.e., the ratio between the square 
of the height of fish’s caudal fin to the caudal fin area) is a proxy of its ‘motility’ (Palomares & 
Pauly 1998). For invertebrates, ‘motility’ values were estimated from their general shape, and 
scaled after fishes with similar shapes and habits. 
 
a. Adult dispersal rate 
We developed a fuzzy logic expert system that used ‘rules-of-thumb’ to predict dispersal rate from 
species’ life history, habitats and ‘motility’. The ‘rules-of-thumb’ represented our general 
understanding of the relationship between some easily-obtainable parameters with dispersal 
ability of marine animals. These rules are expressed as IF-THEN clauses that link premises 
(maximum body length, aspect ratio and habitat) to conclusions (dispersal rate) (Appendix 2). 
Ordinal categories of input attributes were categorized based on pre-defined fuzzy membership 
functions (Figure 6). For instance, if a fish has a maximum body length of 75 cm, it is classified as 
small- and medium-sized fish with degrees of membership equal to 0.5 (Figure 6a). Memberships 
to habitat types (pelagic, demersal and coral reef) are either 0 or 1. 
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Figure 6. Fuzzy membership functions of the inputs (a. 
maximum body length and b. aspect ratio) and output 
(dispersal rate). S – Small, M – Medium, H – High. A fish with 
maximum body length of 75 cm is calculated to have 
membership to ‘Small’ and ‘Medium’ body size with equal 
degree of membership of 0.5 (dotted line in 6a). 

 

 
b. Modelling adult dispersal 
Emigration (adult animals moving out of a cell) was calculated from the dispersal or movement 
rate using an algorithm employed in an Eulerian spatial ecosystem simulation model – Ecospace 
(Walters et al. 1999). Basically, if animals are distributed randomly within a cell (with length of a 
cell side x and distance from the boundary of a cell y) at the start of a time interval dt, a 
proportion xdy/x2 will be a candidate for emigration across each cell boundary (Figure 7). Also, 
the proportion of average organism within this cell to move a length dy over a short time interval 
dt, in a completely random direction, is 1/π (Walters et al. 1999). Thus, the instantaneous 
emigration rate mi for randomly moving organisms to emigrate across each cell boundary can be 
calculated by: 
 

x

V
m i

i ⋅
=

π
 …11) 

 
where Vi and x are the adult dispersal rate and length of a cell, respectively (see Walters et al. 
1999 for details). 
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Figure 7. Schematic diagram of emigration and immigration movements by adult on a spatial 
grid. A is the animal abundance in a cell. Emigration rate is inversely proportional to the length 
of a cell (x). Absolute emigration of animals is directly proportional to emigration rate (m) and 
animal abundance.  

 
Animals generally have higher emigration rate towards cells with more preferable environment 
(e.g., temperature, depth, habitat types). We modelled such behaviour by incorporating a 
hyperbolic function in calculating the emigration rate mi: 
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where mi

(base) is the movement rate in the absence of any gradient and k is a scaling factor 
representing the sensitivity of the calculated emigration rate to changes in environmental 
suitability (as measured by D) (Walters et al. 1999). Small values of k (e.g. 0.1) result in high 
sensitivity to change in D while large values (e.g. 10) render adult dispersal rate insensitive to D. 
We used an intermediate value of k (= 2), but we also compared model outputs from alternative k 
values.  
 
D is assumed to be the ratio of habitat suitability (P), as defined in eq. 6, between the source (i) 
and destination (j) cells. That is,  
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Thus, animals would have higher emigration rate to cells with higher habitat suitability relative to 
the source cell. Finally, emigration of animals (E) from a cell is calculated by multiplying 
emigration rate (mi) by abundance of the cell (Ai) (Figure 7). 
 
Emigrated animals can move back to the source cells. The rate of such re-entry to the source cells 
(RE) is dependent on the abundance relative to its carrying capacity in the destination cells:  
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where k is the scaling factor in eq. 12, KR is the carrying capacity ratio of the destination cell; A 
and KC are animal abundance and carrying capacity of a cell, respectively. Thus, we assume that 
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the re-entry rate of animals is lower from cells with lower abundance relative to carrying capacity. 
This can also reflect lower density-dependency (e.g., intra-specific competition) in destination 
cells which favour successful establishment of new migrants. On the other hand, an animal that 
enter a cell with population abundance at its carrying capacity would return to its original 
(‘source’) cell (which is equivalent to stating that cells at carrying capacity cannot accept new 
animals).  
 
Thus, the net dispersal of adult animals (Iij) to a cell j from cell i is given by: 
 

jiijij REEI −=  …15) 

 
However, some of the dispersed animals (larvae and adults) may not establish themselves in the 
destination cell and die because of density-dependent/independent factors (e.g., increased 
predation, competition). Dispersed animals that die at cell i and time step t (Morti,t) are 
calculated in our model.  
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where N is the total number of cells from where the dispersed adult animal (I) and settled larvae 
(L) come. A major assumption of our model is that current species distributions are in 
equilibrium, i.e., dA/dt = 0. Also, for computation purposes, we have to assume that population in 
every spatial cell at time-step 0 is at its carrying capacity. These assumptions mean that there is 
no net emigration or dispersal at time-step 0 and Morti,0.  
 
The ‘mortality’ of dispersed animals at cell i and time step t (Morti,t) changes as cells’ habitat 
suitability changes with climate. Change in mortality of dispersal animals was modelled by 
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where P is the calculated habitat suitability to the species at time step 0 and t. Thus, as habitat 
suitability changes, spatial dynamics of the modelled species move away from equilibrium and net 
movement of animals between cells occurs 
 
 
Predicting changes in species distributions 
Using equations 2 to 17, we calculated changes in abundance per time step for each spatial cell for 
each species. Since we assume that current species distribution is in equilibrium, abundance in 
each cell remains unchanged if physical conditions (e.g., sea water temperature, habitat types) are 
constant. However, as global climate changes, habitat suitability in each cell, and thus its carrying 
capacity, and the growth, net migration and mortality of the organisms therein, change 
accordingly. For instance, for any cell, if temperature becomes more favourable to a species, its 
habitat suitability may increase according to eq. 6. Carrying capacity (KC) and population growth 
(G) at the cell increase according to eqs. 2 and 5. Simultaneously, increase in habitat suitability 
reduces the mortality rates of larval and adult immigrants. This also allows the successful 
establishment of larvae and adult migrants in previously un-occupied cells. Thus, abundance in 
this particular cell would increase. On the other hand, as temperature becomes less favourable to 
the species, extirpation/emigration increases, and population growth becomes negative (because 
of reduced carrying capacity), leading to a decrease in relative abundance.  
 
To predict changes in species distribution that are solely a result of global climate change, we 
subtract from the predicted changes in distribution with climate change scenario a ‘baseline’ run 
in which temperature was assumed to change only in the first year, then remain constant 
throughout the duration of the rest of the simulation. The reason for this is that, in the model, we 
assume that current (predicted) species distributions are in equilibrium and habitat suitability is 
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solely dependent on the specified environmental factors (see above). However, the original 
species distribution was constructed from environmental boundaries such as maximum and 
minimum depth limits, northern and southern latitudinal limits and habitat associations. Thus 
‘favourable’ habitats, as defined by the specified environmental factors (e.g., temperature, depth) 
may be available outside these boundaries. In reality, however, there may be other factors 
unaccounted for in our model that restrict the species from occupying these areas. Therefore, in 
parallel to simulating changes in relative abundance of a species with changes in sea water 
temperature, we simulated abundance changes by allowing the system to follow the change in sea 
water temperature in the first simulation time step (year 1), after which temperature was kept 
constant. Such procedure ‘perturbs’ the distribution of the species so it moves out of its 
equilibrium distribution range (at time step = 0). (Other environmental factors such as ocean 
advection patterns are treated the same way as temperature changes.) The difference in predicted 
relative abundance between the two simulations was subtracted from the result of simulation with 
temperature changes. For example, if relative abundance increased by 3 units under a given 
climate change scenario and increased by 1 unit without climate change, the predicted change in 
relative abundance became 3 – 1 units = 2 units. This procedure enables us to minimize the 
contribution of factors that are not explicitly accounted for in our model to the change in species’ 
relative abundance distribution. 
 
Modelling the dynamics of pelagic species 
The model is adapted to represent the seasonal (summer and winter) patterns of distributions for 
pelagic species. Current summer and winter distributions of pelagic species are predicted based 
on the algorithm described in Lam et al. (this vol.). Also, current and future seasonally-averaged 
sea water temperatures can be obtained from the NOAA/GFDL Coupled Model. Thus, for pelagic 
species, the model is initiated with the current summer and winter distributions separately. 
Subsequently, changes in species distributions in the two seasons are simulated independently 
using the algorithm described in the above sections. However, instead of sea bottom temperature, 
predicted sea surface temperature is used to identify the species’ thermally-preferred habitats. 
Moreover, the model does not consider bathymetry in predicting the potential distribution range 
of pelagic species. Furthermore, seasonality of spawning is considered. Generally, fishes in higher 
latitudes have stronger seasonality in reproduction than those in lower latitudes. In addition, 
marine fishes often spawn in spring and fall, with spring being the dominant spawning season 
(Helfman et al. 1997).  Thus, we assume that larvae production in the tropics (0o – 10o N/S) is 
similar between seasons, but the proportion of total annual larval production in spring increases 
linearly with latitude until 50o N/S after which the proportion remains constant at 90% in spring 
(or 10% in fall) (Figure 8). 
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Figure 8. Proportion of total annual reproductive output (larvae production) in spring (solid 
line) and fall (dotted line) assumed in the dynamic bioclimatic envelope model.  
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Model implementation 

The numerical model to simulate climate change-induced distribution shift is implemented in 
Visual Basic.net environment. The overall structure of the model is summarized in Figure 9. 
 

 
Figure 9. Schematic representation of the structure of the dynamic bioclimate envelope 
model developed in this study,  implemented in Visual Basic.Net environment. 

System evaluation 

We evaluated the functioning of our model by undertaking model simulation with global sea 
water temperature generated from simple assumptions on rate of temperature increase in the 
next 30 years. We considered two scenarios of global increase in sea water (bottom and surface) 
temperature (Table 2). In each scenario, sea water is warming up slowly near the equator and 
quickly toward the poles. Ocean advection fields were based on the annual average current 
velocity data from the Mariano Global Surface Velocity Analysis (Mariano et al. 1995). In the test 
simulations, ocean advection was assumed to be constant throughout the simulation time-frame. 
However, in the future, ocean advection current data predicted by the NOAA/GFDL Coupled 
Model will be used in predicting realistic effects of global climate change on species distributions. 
 
Table 2. Parameters used to generate hypothetical scenarios of global sea water temperature increase for 
model testing.  
 

 Rate of temperature increase (year-1) 
Scenario At 0o lat At 90o N/S lat 

Interpolation of temperature in other 
latitude 

1 0.025 0.075 
2 0.050 0.150 

Linear change in rate of temperature 
increase from the equator to the poles. 

 
To test the performance of our model, we simulated changes in distributions of four commercially 
exploited species in 30 years under the above two scenarios of global sea temperature change 
(Table 2). The evaluated species are: Nassau grouper, Small yellow croaker, Polar cod, Atlantic 
cod, Western Australia rock lobster, Antarctic toothfish and Australian ruff.  Their life history 
parameters (e.g., Linf, Winf, K) were obtained from FishBase and SeaLifeBase (Froese & Pauly 
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2007; www.sealifebase.org) and from Phillips et al. (1992) for the Western Australian rock lobster 
(Table 3).  
 

Table 3. Input parameters used to simulate changes in distributions of four commercially exploited 
marine species.  
State variables (units) Nassau 

grouper 
Small yellow 

croaker 
Polar  
cod 

Atlantic  
cod 

Linf (cm) 90 29.2 31.3 129 
Winf (g) 13279 403 258 22,300 
K (year-1) 0.09 0.44 0.22 0.20 
R (year-1) 0.51 1.58 0.94 0.39 
Diffusion coefficient (m2 s-1) 100 100 100 100 
Movement rate (km year-1) 50 100 100 200 
Larval mortality rate (day -1) 0.15 0.15 0.15 0.15 
Larval settlement rate (day -1) 0.20 0.20 0.20 0.20 

 
Table 3. Con’t 
State variables (units) Western Australian 

rock lobster 
Antarctic 
toothfish 

Australian 
ruff 

Linf (cm) 10.4* 185 41 
Winf (g) - 75,600 - 
K (year-1) 0.15 0.06 0.24 
R (year-1) 0.3 0.02 1.50 
Diffusion coefficient (m2 s-1) 100 100 100 
Movement rate (km year-1) 50 50 100 
Larval mortality rate (day -1) 0.15 0.15 0.15 
Larval settlement rate (day -1) 0.20 0.20 0.20 

* Carapace length 
 
We also evaluated the possible effects of climate change-induced shifting of coral reefs on the 
distribution of reef-associated species. Coral reefs occur in areas with sea water temperature 
between 18oC to 30oC (Veron 2000). Instances of increased temperature over the physiological 
tolerance limits resulting from climate anomalies had led to large-scale coral bleaching events 
(Glynn 1991, 1993; Hoegh-Guldberg 1999; Bellwood et al. 2004). Intensity and frequency of such 
bleaching events appeared to be increasing since the 1970s (Hoegh-Guldberg 1999; Walther et al. 
2002). The impacts of large-scale bleaching would be particularly prominent to coral reefs in area 
at or near the coral’s upper temperature limits (Hoegh-Guldberg 1999). Some fishes and 
invertebrates are obligatorily or strongly dependent on coral reefs (e.g., some species of butterfly 
fishes, fam. Chaetodontidae). Thus, their distributions may be strongly affected by changes in 
coral reef distribution (Bellwood et al. 2004). On the other hand, the high-latitude limits of coral 
distribution may not shift much because coral growth at high-latitude is generally limited by 
factors other than temperature, e.g., light (Hoegh-Guldberg 1999). Also, consistent increase in 
water temperature from global warming may result in changes in species composition to more 
heat-resistant species, and acclimation or evolution to higher heat tolerance. Thus, distribution of 
coral reefs may not change as global sea temperature changes (Polsenberg 2003). These may 
dampen the effects of global warming on coral reef distribution (Hughes et al. 2003).  
 
To test the potential effects of climate-induced changes on coral reef distribution, we attempted to 
mimic the effects of global warming on coral reefs. Based on a global map of coral reefs (UNEP-
World Conservation Monitoring Centre 2005), we plotted the distribution of relative coral reef 
abundance over latitudinal zones (Figure 10). Relative coral reef abundance was calculated from 
the ratio of the estimated coral reef area to the area of sea with average depth below 50 m at each 
latitudinal zone. The latter was calculated from a spatial grid of the world ocean at 30’ latitude x 
30’ longitude resolution, and was used to indicate the availability of waters for potential coral 
growth. Thus, the calculated relative coral reef abundance is an approximate measure of coral reef 
density. We assume that relative coral abundance is bimodal and could be approximated by two 
normal distributions representing relative coral abundance in the northern and southern 
hemisphere. We fitted the two normal distributions to the observed relative coral reef abundance 
distribution using least-square methods so that the sum-of-square difference between the 
observed distribution and the sum of the two predicted distributions was minimized (Figure 10). 
We then assumed that, under global warming, the mean latitude of each abundance distribution 
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in the northern and southern hemisphere would shift north and south, respectively, while the 
higher latitudinal limits and the standard deviations of the distribution remained constant. 
Future absolute coral abundance at specific area was then calculated from: 
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where CAi,t is absolute coral abundance (km2) at grid cell (30’ x 30’) i and time (year) t. LCi is the 
latitude at the centre of grid cell i where the specific area of coral occurs, and δ2 is the standard 
deviation of the normal distribution function f (Figure 11).  
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Figure 10. Relative coral reef abundance at different latitudinal zones based on: (a) observed coral reef 
abundance (UNEP-World Conservation Monitoring Centre 2005); (b) predicted abundance by fitting 
two normally-distributed relative abundance – latitude relationship with means = 10.4o and -16.4o and 
standard deviations = 12.36o and 6.88o. The observed northern and southern limits of coral 
distribution were maintained in the predicted distribution. 
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Figure 11. Schematic diagram showing the calculation of the hypothetical effects of global 
warming on coral abundance in the northern hemisphere. The solid line is a normal distribution 
obtained from fitting with observed relative coral abundance with a mean of LC(t). Assuming 
that mean relative coral abundance shift at a rate of (LC(t+1)-LC(t)) per year, the dotted line with 
open circles represents a predicted distribution of relative coral reef abundance at year t + 1. 
Predicted absolute coral reef area in a grid cell at latitude of 25oN would increase by a ratio as 
indicated by the arrows. 

 
We simulated hypothetical changes in distribution of coral reef abundances under three 
scenarios: (a) no change; (b) mean relative coral reef abundance shifted at a rate of 20 km year-1 
(northward and southward in the northern and southern hemisphere, respectively) and (c) mean 
relative coral reef abundance shifted at 50 km year-1 (Figure 12). We used the Sohal surgeonfish 
(Acanthurus sohal) as a case study to evaluate potential influence of changes in coral abundance 
under global warming on distributions of coral reef-associated species. 
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a) 

 

b) 

 
c) 

 

 

 
 
Figure 12. Simulated hypothetical changes in distribution of coral reef abundances in the Indo-Pacific 
region after 30 years under three scenarios: (a) no change, (b) mean relative coral reef abundance 
shifted at a rate of 20 km year-1 (northward and southward in the northern and southern hemisphere, 
respectively) and (c) mean relative coral reef abundance shifted at 50 km year-1. 

 
We also tested the effect of change in sea ice coverage on polar species. Both empirical and 
climate models suggest that sea ice coverage will continue to decrease as global temperature 
increases as predicted (Johannessen et al. 1999, 2004; Vinnikov et al. 1999; Flato & Boer 2001; 
Comiso 2002). Change in sea ice coverage can greatly affect polar ecosystems and the distribution 
of the associated species (Eicken 1991). For example, the reproductive grounds of krill 
(Euphausia superba), a key food source for higher predators such as penguins and whales, can be 
affected by reducing the area of sea ice formed near the Antarctic Peninsula (Loeb et al. 1997; 
Walther et al. 2002). This may also affect the distributions of the predators that depend on krill.  
Thus, we evaluated the sensitivity of predicted polar species distributions to changes in sea ice 
coverage. We assumed that the polar sea ice edges retreat at a rate of 5 km year-1. This is not an 
attempt to mimic realistic sea ice changes. Instead, the hypothetical scenario allows us to explore 
the potential effects of sea ice change on distribution of polar species. Realistic changes in sea ice 
coverage predicted from climate model will be used in the future. 

 

RESULTS 

Simulated shift in distribution 

Small yellow croaker (Larimichthys polyactis) 
Simulations using the two hypothetical scenarios of increase in global sea water temperature 
predicted that distributions of the Small yellow croaker would shift northward in 30 years (Figure 
13, 14). Both the centroid and latitudinal range limits of the distribution shifted in all positive 
warming scenarios. The original distribution of Small yellow croaker was restricted to the East 
China Sea. However, as sea water temperature increased, the northern range limit reached into 
the Bohai Sea and the coast of Japan (main islands), which were not previously occupied by this 
species. Simultaneously, the southern range limits shifted north from the Taiwan Strait. The 
degree of range shift also differs between coast and offshore regions. Under a stronger warming 
scenario (scenario 2), the northern range limit shifted by 5o latitude while the centroid of the 
distribution shifted by around 3o northward (Figure 14).  
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Figure 13. Simulated changes in distribution of Small yellow croaker after 1 year (upper left), 10 years (upper 
right), 20 years (lower left) and 30 years (lower right) under a hypothetical mild level of ocean warming 
(scenario 1). 

 

 

 

 

 
 

 

 

 

Figure 14. Simulated changes in distribution of Small yellow croaker after 1 year (upper left), 10 years (upper 
right), 20 years (lower left) and 30 years (lower right) under a hypothetical strong level of ocean warming 
(scenario 2). 
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Nassau grouper (Epinephelus striatus) 
Similar patterns of range shift were observed for Nassau grouper, which ranges across the equator 
(Figure 15 & 16). Under both milder and stronger warming scenarios, Nassau grouper generally 
moved away from the equator after 30 years, while their relative abundance increased in higher 
latitudes. For example, abundance increased almost five-fold in southern coast of Brazil. Also, the 
southern range limit extended further into Uruguay. Particularly, in the stronger warming 
scenario (Figure 16), relative abundance of inshore populations from Venezuela to northern Brazil 
was much reduced. On the other hand, relative abundance in the southeast and east coast of USA 
increased. 
 

 

 

 

 
 

 

 

 
Figure 15. Simulated changes in distribution of Nassau grouper after 1 year (upper left), 10 years (upper right), 
20 years (lower left) and 30 years (lower right) under a hypothetical mild level of ocean warming (scenario 1). 
 

 

 

 

 
 

 

 

 
Figure 16. Simulated changes in distribution of Nassau grouper after 1 year (upper left), 10 years (upper right), 
20 years (lower left) and 30 years (lower right) under a hypothetical strong level of ocean warming (scenario 2). 
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Polar cod (Boreogadus saida) 
Polar cod was found to be sensitive to the warming scenarios and the model predicted that it 
would be extirpated in most of its range even under the milder warming scenario (Figure 17). This 
is due to its occurrence in the Arctic Ocean, which largely precludes it from moving northwards. 
Polar cod was predicted to be extirpated around Greenland and its abundance was largely 
reduced in other parts of the Arctic Ocean after 30 years of hypothetical warming.  
 
 
 
 

 

 

 
 

 

 

 
Figure 17. Simulated changes in distribution of Polar cod after 1 year (upper left), 10 years (upper right), 20 years 
(lower left) and 30 years (lower right) under hypothetical scenarios of ocean warming (scenario 1) and retreating 
sea ice edge at a rate of 5 km per year. Polar cod is extirpated from most of its range in 30 years. 
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Antarctic toothfish (Dissostichus mawsoni) 
Under a mild ocean warming and with the ice edge retreating at a rate of 5 km per year, the 
distribution range of Antarctic toothfish was predicted to contract (Figure 18). As this species only 
occurs around Antarctica, it cannot expand its southern limits when sea water temperature 
increases. Also, we assume that Antarctic toothfish has an affinity to sea ice edge. The retreating 
sea ice also contributed to the range contraction. Under the stronger warming scenario, the 
distribution range of Antarctic toothfish becomes so restricted that it would induce extinction in 
30 years. 
 

 

  
 

  
 
Figure 18. Simulated changes in distribution of Antarctic toothfish after 1 year (upper left), 10 years (upper right), 
20 years (lower left) and 30 years (lower right) under hypothetical scenarios of ocean warming (scenario 2) and 
retreating sea ice edge at a rate of 2 km per year. Antarctic toothfish is predicted to become extinct in 30 years 
under the specified scenario.  
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Atlantic cod (Gadus morhua) 
A strong global warming scenario (scenario 2) resulted in a general northward shift of 
distribution of Atlantic cod (Figure 19). In the northwest Atlantic, our model predicted that the 
abundance of the southern cod stocks (Georges Bank, Gulf of Maine, and Scotian Shelf) would 
decline. In the northeast Atlantic, relative abundance of cod declines in the North Sea, Irish Sea, 
Celtic Sea and Norwegian Sea. On the other hand, the relative abundance of the Icelandic, Faroe 
Island and Barents Sea cod stock increased. Also, the distribution of cod extends further into the 
Arctic as the ice sheet retreats. 
  

 

 

 

 
 
Figure 19. Simulated changes in distribution of Atlantic cod after 1 year (upper left), 10 years (upper right), 
20 years (lower left) and 30 years (lower right) under hypothetical scenarios of ocean warming (scenario 2). 
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Western Australian Rock lobster (Panulirus cygnus) 

Distribution range of Western Australian rock lobster was predicted to shift southward under the 
sea temperature warming scenarios (Figure 20). The centroid of its latitude distribution shifted 
south by approximately 1o and 3o in 30 years under the milder and stronger warming scenarios, 
respectively. Moreover, the southern range limit extended further into the southwest of the 
Australia continent.  
 
 
 

 

 

 
 

 

 

Figure 20. Simulated changes in distribution of Western Australian rock lobster after 1 year (upper left), 10 years 
(upper right), 20 years (lower left) and 30 years (lower right) under a hypothetical strong ocean warming (scenario 
2). 
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Australian ruff (Arripis georgianus) 

Similar to Western Australian rock lobster, when global sea water temperature increases, the 
distribution range of Australian ruff moves to cooler waters in the south (Figure 21). Australian 
ruff is a pelagic species and its seasonal movements are accounted for our simulation model. Our 
results suggest that the summer distribution of Australian ruff is more sensitive to temperature 
changes in summer (as indicated from the faster rate of southward shift) than in winter. 
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Figure 21. Simulated changes in distribution of Australian ruff in summer (left panel) and winter (right panel) 
after 1 year, 10 years, 20 years  and 30 years under a hypothetical strong ocean warming (scenario 2). 
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Sensitivity analysis 

Larval dispersal 

Dispersal and recruitment of fish larvae are sensitive to the larval mortality and settlement rates 
specified in the larval dispersal model (Figure 22). Again, recruitment is defined here as the 
settlement of pelagic larvae. Absolute level of total recruitment is controlled by the natural 
mortality rate of the larvae. Thus, species with extended pelagic larval duration are generally 
more sensitive to the specified mortality rate. Larval settlement rate strongly affects the 
distribution of settled larvae. In the case of Small yellow croaker, a high settlement rate (15% day-

1) results in strong local recruitment (i.e., recruitment to the adult distribution range), while a low 
settlement rate (1% day-1) results in wider range of larval dispersal (Figure 22).  
 

a) 

 
b) 

 
c) 

 
 
Figure 22. Simulated dispersal of larvae of Small yellow croaker from the current species distribution 
predicted by Close et al. (2006). Alternative larval settlement rates (a) 15% day-1, (b) 7.5% day-1 and 
(c) 1% day-1 representing scenarios with strong and weak local larval recruitment, respectively. 
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Low larval settlement generally accelerates the movement rate and increases the extent of 
distribution shift (Figure 23). Under a lower larval settlement rate of 0.01 year-1 (i.e., larvae were 
allowed to travel further before settlement), distribution of Small yellow croaker extends further 
northeast to the coast of Japan after 30 years under a strong warming (scenario 2). The higher 
dispersal ability enables the fish to occupy such habitat. On the other hand, the general pattern of 
distribution shift is similar to the scenario with higher larval settlement rate (0.15 year-1).  
 

 
Figure 23. Predicted distribution of Small yellow croaker with low larval dispersal rate 
(0.01 year-1) after 30 years of strong warming (scenario 2). 

 
A high larval production rate or alternative settings of migration sensitivity parameter (k) results 
in slight changes in the prediction distribution of Small yellow croaker after 30 years under a 
strong warming scenario (Figure 24). Relative abundance is slightly higher in the newly-occupied 
areas in the north. The effect is similar to those obtained from a low larval settlement rate or low 
larval mortality rate. Alternative settings of migration sensitivity parameter (k) (default = 2, low = 
0.5, high = 5) only slightly affect the prediction distributions of Small yellow croaker (Figure 25).  
 

 
Figure 24. Predicted distribution of Small yellow croaker with high larval production 
rate (0.5 times parent biomass per year) after 30 years of strong warming (scenario 2). 
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Figure 25. Predicted distribution of Small yellow croaker after 30 years of strong warming (scenario 2) with 
(a) low migration sensitivity (k = 0.5) and high migration sensitivity (k = 5) (default value of k = 2). 
 

 

Intrinsic rate of increase 

The intrinsic rate of population increase (r) specified in the model does not appear to have strong 
effects on the predicted change in distribution range of Small yellow croaker (Figure 26). Under 
both low and high values of r (0.8 and 3 year-1, respectively) and hypothetical strong warming 
(scenario 2), the extents of range shift after 30 years of simulation are generally the same. 
However, with lower r, relative abundance in the newly-occupied northern region is lower than 
predictions with higher r. Predicted relative abundance around the southern limits is similar 
between simulations with low and high r (Figure 26).  
 

 

 

 
 
Figure 26. Predicted distribution of Small yellow croaker after 30 years of strong warming (scenario 2) with 
intrinsic rate of population increase of (a) 0.08 year-1 and (b) 3 year-1. 
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Coral reef shift 

A hypothetical shift in coral reef distribution has little effect on the predicted distribution of Sohal 
surgeonfish (Acanthurus sohal) (Figure 27). Sohal surgeonfish is a coral reef fish, although it also 
occurs in habitats such as rocky bottoms. Under 30 years of hypothetical warming, the relative 
abundance of inshore populations of Sohal surgeonfish at low latitude is predicted to be much 
reduced. Conversely, its relative abundance at higher latitude increased. However, coral reefs, 
overall, had small effects on the simulated distributions.  
 

a) 

 
b) 

 
c) 

 
 
Figure 27. Predicted distribution of Sohal surgeonfish (Acanthurus sohal) after 30 years under three 
hypothetical scenarios (a) no change in coral abundance, (b) coral reef shifts at a rate of 20 km year-1, 
and (c) coral reef shifts at a rate of 50 km year-1. A mild warming (scenario 2) was used in the 
simulations.  
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Discussion 

Test simulations 

The simulation model presented in this report allows quantitative predictions of the effects of 
climate change on distributions of all commercially exploited marine species at a global scale. 
Unlike conventional bioclimate envelope models that predict changes in species distribution only 
from identified bioclimate envelope (Pearson & Dawson 2003), this model incorporated 
population and ocean current dynamics in simulating distribution changes. These components 
are important in shaping distributions of marine organisms (Gaylord & Gaines 2000; Bradbury & 
Snelgrove 2001). For instance, range limits could be caused largely by oceanographic 
discontinuities (Gaylord & Gaines 2000). Also, organisms’ life history traits may affect their 
responses (in terms of rate and magnitude) to environmental changes (Perry et al. 2005). Thus, 
their inclusions allowed more realistic simulations of responses to climate change scenarios. 
 
Our model explicitly represents both non-interactive (additive) and interactive (multiplicative) 
effects of climate influence on population dynamics (Stenseth et al. 2002). Example of non-
interactive or additive effects included increased net influx of new migrants (through adult 
movement or larval dispersal) as environmental conditions in an area became more favourable to 
the species of interest. In the case of Small yellow croaker, increased temperature reduced the 
mortality of migrants to the previously unoccupied Bohai Sea. Thus, relative abundance of the 
species increased in Bohai Sea through the addition of new migrants. Simultaneously, carrying 
capacity of Small yellow croaker increased in the northern range limit and decreased in the 
southern range limit as temperature increased. These reduced the strength of density dependence 
in the north, and increased it in the south. Thus, relative abundance of Small yellow croaker 
shifted gradually towards the north under both (mild and strong) warming scenarios. Responses 
to the warming scenarios were similar in the case of Nassau grouper. 
 
Some species may be unable to adapt to global warming by range shifting and may be extirpated. 
Antarctic toothfish occurs around the Antarctic. In our model, as sea temperature increased, the 
species was unable to shift its range further south, into cooler waters. As sea temperature 
increased outside the tolerance limits of Antarctic toothfish, suitable habitat that was reachable 
by the species gradually declined. Eventually, the species was extirpated as suitable habitats 
disappeared. Thus, if the magnitude of warming is large enough, it is likely that some species will 
be rendered extinct.  
 
The predicted distribution of Atlantic cod under hypothetical warming scenarios agreed with 
predictions independently conducted by others (e.g., Drinkwater 2005). Based on observed 
relationship between recruitment strength and sea-bottom temperature, Drinkwater (2005) 
predicts that, if sea water temperature increased, the Celtic and Irish Seas stocks of Atlantic cod 
would disappear, while the southern North Sea and Georges Bank stocks would decline. Cod 
distribution may also shift northwards along coastal Greenland and Labrador and to the Barents 
Sea and the Arctic Ocean (Drinkwater 2005). Such predictions generally agree with our 
simulation results, which provided some support to the validity of our model. 
 
Changes in distribution ranges predicted from climate model generated data will obviously be 
more complex than the test simulations presented in this study. Here, we assumed a monotonic 
increase in sea temperature (bottom and surface). However, predictions from climate models are 
more complex than our hypothetical scenarios. For instance, warming may show hemispheric 
asymmetry, with more warming in the northern high latitude than in the south, although the 
evidence is not yet conclusive (Flato & Boer 2001). Also, rate of warming in different ocean basins 
may vary. Recorded sea water temperature over the last half-century showed different rates of 
increase in different oceans (Levitus et al. 2000). Moreover, we assumed that ocean currents  
were in a steady-state. However, ocean currents will change with global climate (Rahmstorf & 
Ganopolski 1999; Vellinga & Wood 2002), which will affect distributions and population 
dynamics of marine species (Gaylord & Gaines 2000; Walther et al. 2002).  
 
In the future, predicted changes in physical attributes (e.g., sea bottom and surface temperature, 
ocean advection fields) from year 2000 to 2100 will be provided through the kindness of Dr Jorge 
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Sarmiento and his collaborators at the Atmospheric and Oceanic Sciences Program, Princeton 
University. The data are simulated from the NOAA’s Geophysical Fluid Dynamics Laboratory 
Coupled Model, version 2.1 (GFDL’s CM2.1 model) under three scenarios of future CO2 emission: 
(1) drastic reduction of CO2 from the present, (2) moderate reduction of CO2 from the present, (3) 
maintenance at year 2000 level.  When we use such data in our simulations, predicted patterns of 
range-shifting of the studied species should be more realistic. 
 

Model uncertainty 

Because of its broad geographic and taxonomic scope, it was unavoidable that we had to make 
various assumptions in our model, to reduce the number of required parameters and simplify the 
dynamics of the system to a practical level. Many assumptions are in fact inherent in most 
bioclimate envelope models developed to study the effects of climate change (Pearson & Dawson 
2003). The major assumptions, and the potential implications for predictions from our model, are 
detailed here. 
 

Biotic interactions 

The model did not explicitly account for inter-specific interactions. Species within a community 
may respond differently to climate change (Walther et al. 2002). For instance, distributions of 
predators and their preys may shift at different rates as climate-linked oceanographic conditions 
change. This can result in reduced range-overlap and may disrupt existing biotic interactions 
(e.g., predation) in a community (Murawski 1993; Hughes 2000; McCarty 2001; Walther et al. 
2002). Thus, a predator with high prey specificity may not find enough food if its prey’s range 
does not shift along with its own. Moreover, food web interactions may affect the rate of climate-
induced distribution shift. For example, the rapid expansion of distribution range of the 
Humboldt squid (Dosidicus gigas) in the eastern North Pacific may be linked to changes in 
climate-related oceanographic conditions and the depletion of their competitors and predators 
(Zeidberg & Robison 2007). Rapid invasion of predators such as the Humboldt squid may 
destabilize the ecosystem as potential preys may be exposed to increased predation risk. These 
trophic dynamics may modify the patterns of range shifts predicted by our model. 
 
Incorporation of biotic interactions in predicting effects of climate change at multi-species or 
ecosystem levels would be the next step of this modelling exercise. The model developed in this 
study targets a wide range of exploited marine species at global scale and is aimed to predict 
general patterns of potential responses of individual species to climate change scenarios. 
Predictions on individual species can later be incorporated into dynamic multi-species/ecosystem 
models such as Ecopath with Ecosim and Ecospace (Walters et al. 1997, 1999; Pauly et al. 2000). 
The tropho-dynamic models can then evaluate the potential effects of climate changes on biotic 
interactions and on structure of the ecosystem. 
 

Evolutionary changes 

Species with high rates of evolutionary changes may adapt to changing climates and thus affect 
their patterns of range-shifting. Our model implicitly assumes that rates of adaptation are slower 
than extinction rates (niche conservatism) (Pearson & Dawson 2003). On the other hand, 
evolutionary responses to climate changes are shown in some insects (Thomas et al. 2001). For 
instance, two butterfly species have increased the variety of habitat types that they can colonize. 
Also, fractions of longer-winged (dispersive) individuals of two bush cricket species increased 
(Thomas et al. 2001). In these examples, the dispersal ability of the species was enhanced by 
evolutionary changes. Although evidence on genetic changes in marine species that are directly 
related to climate change is scarce, changes in life history traits in response to extrinsic factors 
(e.g. fishing) that may be phenotypic or genetic are more common (Law 2000). Phenotypic 
changes in response to fishing included increased somatic growth, reduced age at first maturity 
and decreased body size (Rijnsdorp 1993; Law 2000; Kraak 2007). However, these changes most 
likely affect the rate of range-shifting, but not the magnitude of the shift. On the other hand, 
evidence from Pleistocene glaciation indicates that species more often responded to climate 
change ecologically, by shifting their ranges, rather than evolutionarily, through local adaptation 
(Parmesan et al. 2000). Thus, although our model may underestimate the rate of range shift by 
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ignoring potential evolutionary changes that may increase species’ dispersal ability, model results 
can be considered conservative predictions of responses to climate change.  
 

Population dynamics 

The complexity of population dynamics may affect species’ responses to climate change. The 
incorporation of population dynamics in our bioclimate envelope model is an advance from 
previous attempts to predict climate change-induced distribution shift (Pearson & Dawson 2003). 
However, considering the resolution of the model, the scale of the study and the limited 
availability of model parameters, simplifications were made to the population dynamic models. 
Firstly, we modelled populations as homogenous biomass pools. Thus the model did not explicitly 
represent population and age structures. Populations of a species may have different life history 
and show different adaptations to environmental changes. For instance, in some species, 
individuals with bigger body size tend to have a more unstable range limit and to be more likely to 
shift in range than those with a smaller body size (Roy et al. 2001). Secondly, we represented 
larval production and recruitment by a linear relationship with biomass-pool and a constant 
larval survival and settlement rate. However, dynamics of larval production, survival and 
recruitment are generally non-linear and controlled by complex factors that include climate, 
oceanography and ecology. Thirdly, except for pelagic species, our model simulated annual 
averaged dynamics of populations. However, seasonal dynamics may be important in 
understanding responses to climate change for non-pelagic species as well (Barbraud & 
Weimerskirch 2003). 
 
Given the uncertainties of the parameters, the predicted range-shifts were generally robust. The 
magnitude of predicted distribution range-shift was similar under alternative values for the 
intrinsic rate of population increase, larval dispersal and settlement. The extent of the 
distribution range in the model is determined primarily by the available bioclimate envelope and 
is thus less dependent on population dynamics. However, the rate of range-shifting may be more 
sensitive to the specified population dynamics. Species with higher dispersal ability are able to 
colonize suitable habitats at a faster rate. Also, higher larval production (or reduced larval 
mortality) also increases the rate of colonization. On the other hand, climate change (e.g., 
temperature changes) should generally operate at a much longer time scale (decade) than species’ 
population dynamics (year). Thus, predictions from our model should be largely insensitive to 
population parameters. This is backed by the results from the sensitivity analysis conducted in 
this study, which generally showed that simulated changes in distribution ranges in 30 years were 
insensitive to the specified population parameter values. 
 
Our model did not represent density-dependent changes in environment preferences. Species’ 
preferences for habitats may change with population density. For instance, Atlantic cod in the 
southern Gulf of St. Lawrence tended to occupy colder water when its abundance was high. Such 
density-dependent shifts in spatial patterns may be a response to decreased food availability by 
lowering density-independent energy costs (Swain & Kramer 1995). However, if the current 
species distribution range has captured the full temperature tolerance range of the species, such 
density-dependent responses should have small effect on predicted distribution range from our 
model under various climate change scenarios. On the other hand, should the species be able to 
move to colder habitats from those depicted by the current range because of density-dependent 
effects, the prediction from our models will be conservative. Density-dependent movement to 
colder habitats may increase the distribution range if climate change increases the strength of 
density-dependent competition for food. 
 

Extrinsic factors 

Our model assumes that the current distribution of a species reflects its temperature preference 
and tolerance limits. However, factors other than those explicitly considered here may determine 
species distribution (Samways et al. 1999). Thus, a species’ distribution range may be well within 
its physiological temperature limits. Then, predictions from our model would over-estimate the 
responses of the species to temperature changes. On the other hand, sea temperature is shown to 
be a principal factor determining distributions, abundance and physiology of fish species (Pörtner 
2001; Roessig et al. 2004). Other climate factors that may potentially affect marine fishes and 
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invertebrates but which are not explicitly incorporated in our model include productivity, salinity, 
pH, seawater chemistry, UV radiation and sea level. Productivity is partly dealt with in our model 
as it is correlated with temperature. Salinity, pH, seawater chemistry and sea level may have 
stronger influence on intertidal or strongly coastal species. Effects on more oceanic species, which 
represent the majority of commercially-exploited species, are generally less important than 
temperature. UV radiation may affect survival of pelagic larvae. However, predicted range-shifts 
from our model appeared to be largely insensitive to larval survival rate. Thus, although fine-scale 
predictions from our model may be uncertain, predictions at large (global) scale should be robust 
to parameter uncertainty. 
 

Potential shifting of habitats 

Predictions from our model were generally robust to the potential shift of physical habitats. 
Physical habitats that marine species may be associated to can shift in space under climate 
change, e.g. coral reefs (Hoegh-Guldberg 1999; Hughes et al. 1999). However, the overwhelming 
majority of the commercially-exploited species that are included in the UN Food and Agriculture 
Organization (FAO) fisheries statistics, and hence in the Sea Around Us database, do not occur 
exclusively on coral reefs. They were mostly reef-associated species that could inhabit other 
complex physical structures such as rocky reefs. Distributions of these alternative physical 
structures were generally not affected by climate change.  Thus, at the scale of our model (30’ 
latitude x 30’ longitude grid), effects of shift in physical habitat such as coral reefs on the 
associated (commercially-exploited) species should not be apparent. On the other hand, such 
habitat effects on species distribution may be important at local scale. 
 

Future improvements 

In the future, the model will account for the effect of changes in salinity on species’ distribution 
ranges. Salinity can determine the distribution of marine fishes and invertebrates (Helfman et al. 
1997; Edgar and Last 1999; Blaber 2000) and global warming may result in changes in sea water 
salinity (Munk 2003). For example, regional climate models predict reduction in the salinity of 
the Baltic Sea following increase in river run-off (Omstedt et al. 2000; Meier 2002; Meier & 
Kauker 2003). Species that are adapted to waters with high salinity may disappear from such 
regions (Roessig et al., 2005). To incorporate the salinity factor into the model, we will categorize 
marine fishes and invertebrates into different salinity tolerance levels. We will also generate 
habitat maps of species’ preferred sea water salinity levels based on current and predicted sea 
water salinity and species’ salinity tolerance limits. Then, we can incorporate salinity as a habitat 
factor in the algorithm that account for species habitat affinity (e.g. coral reef) in simulating 
future distribution ranges. 
 
Moreover, we will incorporate coastal upwelling as a factor in determining the present and future 
distributions of marine species. Coastal upwelling is an important factor that determines the 
productivity and distribution of many marine species (Horn and Allen 1978; Barber and Smith 
1981). Some species are solely associated with coastal upwelling systems (e.g., the Peruvian 
anchoveta), while some may avoid such systems. It is predicted that climate change may lead to 
acceleration of coastal upwelling (Bakun 1990; McGregor et al. 2007). Such changes will affect 
the physical and biological structure of coastal upwelling systems (Barth et al. 2007) and, 
therefore, may contribute to shifts in distribution ranges of their associated species. To 
incorporate this factor into the dynamic bioclimate envelope model, we will construct a 
distribution map of major coastal upwelling regions of the world ocean and calculate their 
intensity using sea surface temperature anomalies. We will then assign an affinity index of coastal 
upwelling to marine fishes and invertebrates. Using the affinity index and the present and 
projected upwelling intensity (calculated from predictions from global circulation models), we 
will then be able to incorporate coastal upwelling as a factor in predicting distribution shifts of 
marine fishes and invertebrates given different climate change scenarios. 
 
We will also attempt to predict global distribution maps of kelp forests and simulate how climate 
change may affect the distribution of kelp forests and their associated fauna. Kelp forests are 
among the world’s most productive ecosystems and are important habitats for a wide variety of 
species (Mann 1973). Their distribution is sensitive to oceanographic conditions such as sea 
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temperature (Graham et al. 2007). Thus, climate change may have considerable impact on the 
distributions of kelp forest and their associated fauna. A previous study successfully uses 
ecophysiological and oceanographic model to predict kelp populations (Graham et al. 2007). Our 
model can adopt a similar approach in predicting the effects of climate change on the distribution 
of these kelp populations. Moreover, similar to coral reef species, we can assign a kelp-affinity 
index to species that are associated with kelp forests. Combining this index with a global habitat 
map of kelp, we can improve our predicted distribution ranges of kelp-associated species. By 
simulating the changes in distribution of kelp forest under climate change scenarios, we can 
predict how distribution ranges of kelp-associated species may change. 
 
Our model can also incorporate hypotheses relating to climate-induced changes in physiology and 
population dynamics. The metabolism of fish is generally limited by the intake and availability of 
oxygen to body cells. These processes are strongly temperature-dependent. The metabolism 
affects somatic growth, body size and other life history traits that are closely correlated with each 
other (Pauly 1980, 1981, 1998). These may then affect population dynamics (e.g., reproduction, 
mortality, density-dependence etc.). Thus, incorporation of such dynamics in the simulation 
model may allow the model to make more accurate predictions on the impacts of climate change. 
 
We do not explicitly account for the effects of changes in ocean chemistry in our model; this can 
be an area for future improvement. Physiology and population dynamics of marine organisms 
may also be affected by changes in ocean chemistry. Specifically, the potential impacts of ocean 
acidification by anthropogenic CO2 on the balance of calcium carbonate system in the Oceans 
have been raised (Feely et al. 2004). Ocean acidification may lead to the dissolution of calcium 
structure such as shells or coral skeleton and render the maintenance of such structures more 
difficult (Feely et al. 2004; Orr et al. 2005). High acidity may also increase the mortality of fish 
eggs and larvae (Kikkawa et al. 2003).Under various projected scenarios of future CO2 emission, 
conditions of ocean acidification may have stronger impacts on high-latitude ecosystems and the 
impacts could develop within decades. In the future, we may potentially include ocean chemistry 
as a factor that affects the organisms’ growth and evaluate its effect on their distribution. 
 
To assess the accuracy of predictions from our model, past climate and species distribution data 
can be used. Based on these past data, we can use the model to simulate changes in distribution 
ranges of the species. The accuracy of the model can be assessed by comparing the model-
reconstructed changes with empirically-observed data. For instance, detailed climate, abundance 
and distribution data of many commercially-important species in the North Sea are well-
documented (Perry et al. 2005). Such data can be used for model validation.  
 
 

CONCLUSIONS 

The dynamic bioclimate envelope model developed in this study provides a tool to quantitatively 
evaluate the effects of climate scenarios on a wide range of marine species. Using the data from 
global databases such as FishBase and the Sea Around Us Project database, the model can be 
applied to all commercially-exploited marine species, and indeed to any species for which 
distribution range maps exist. Given the targeted scale of the model and the trade-off between 
data availability and model details, the model appears to provide reasonable predictions that are 
robust to major model assumptions. Used in conjunction with models that translate biogeography 
to fishery productivity, it can be used to inform policy makers about potential socio-economic 
implications of climate change for global fisheries. 
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Appendix 1 

List of exploited polar species identified based on biogeography of the species (see text). 
  

Common  name Scientific name Region 
Antarctic krill Euphausia superba Antarctic 
Antarctic silverfish Pleuragramma antarcticum Antarctic 
Antarctic stone crab Paralomis spinosissima Arctic 
Antarctic toothfish Dissostichus mawsoni Antarctic 
Bible icefish Neopagetopsis ionah Antarctic 
Black rockcod Notothenia coriiceps Antarctic 
Blackfin icefish Chaenocephalus aceratus Antarctic 
Blunt scalyhead Trematomus eulepidotus Antarctic 
Carlberg's lanternfish Electrona carlsbergi Antarctic 
Charr Salvelinus alpinus Antarctic 
Eatons skate Bathyraja eatonii Antarctic 
Formosan snow crab Paralomis formosa Arctic 
Grey rockcod Lepidonotothen squamifrons Antarctic 
Hooked icefish Chionodraco hamatus Antarctic 
Humped rockcod Gobionotothen gibberifrons Antarctic 
Kerguelen sandpaper skate Bathyraja irrasa Antarctic 
Mackerel icefish Champsocephalus gunnari Antarctic 
Navaga Eleginus navaga Antarctic 
Ocellated icefish Chionodraco rastrospinosus Antarctic 
Polar cod Boreogadus saida Antarctic 
Smalleye moray cod Muraenolepis microps Antarctic 
South Georgia icefish Pseudochaenichthys georgianus Antarctic 
Spiny icefish Chaenodraco wilsoni Antarctic 
Striped rockcod Trematomus hansoni Antarctic 
Striped-eye notothen Lepidonotothen kempi Arctic 
Unicorn icefish Channichthys rhinoceratus Antarctic 
Whitson's grenadier Macrourus whitsoni Antarctic 
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Appendix 2 

Rules that determine the level of dispersal rate of a species based on its maximum body length, 
aspect ratio and associated habitat. 
 
No. Premises  Conclusions 

(Dispersal rate) 
 

1 IF Maximum body length is Large AND   
 Aspect ratio is High AND   
 Habitat is Pelagic THEN Very high  
      
2 IF Maximum body length is Large AND   
 Aspect ratio is Medium AND   
 Habitat is Pelagic THEN High  
      
3 IF Maximum body length is Large AND   
 Aspect ratio is Low AND   
 Habitat is Pelagic THEN Low  
      
4 IF Maximum body length is Medium AND   
 Aspect ratio is High AND   
 Habitat is Pelagic THEN High  
      
5 IF Maximum body length is Medium AND   
 Aspect ratio is Medium AND   
 Habitat is Pelagic THEN Moderate  
      
6 IF Maximum body length is Medium AND   
 Aspect ratio is Low AND   
 Habitat is Pelagic THEN Low  
      
7 IF Maximum body length is Small AND   
 Aspect ratio is High AND   
 Habitat is Pelagic THEN Low  
      
8 IF Maximum body length is Small AND   
 Aspect ratio is Medium AND   
 Habitat is Pelagic THEN Low  
      
9 IF Maximum body length is Small AND   
 Aspect ratio is Low AND   
 Habitat is Pelagic THEN Low  
      
10 IF Maximum body length is Large AND   
 Aspect ratio is High AND   
 Habitat is Demersal THEN High  
      
11 IF Maximum body length is Large AND   
 Aspect ratio is Medium AND   
 Habitat is Demersal THEN Moderate  
      
12 IF Maximum body length is Large AND   
 Aspect ratio is Low AND   
 Habitat is Demersal THEN Low  
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Appendix 2 (cont.) 
 
No. Premises  Conclusions 

(Dispersal rate) 
 

13 IF Maximum body length is Medium AND   
 Aspect ratio is High AND   
 Habitat is Demersal THEN Moderate  
      
14 IF Maximum body length is Medium AND   
 Aspect ratio is Medium AND   
 Habitat is Demersal THEN Low  
      
15 IF Maximum body length is Medium AND   
 Aspect ratio is Low AND   
 Habitat is Demersal THEN Low  
      
16 IF Maximum body length is Small AND   
 Aspect ratio is High AND   
 Habitat is Demersal THEN Low  
      
17 IF Maximum body length is Small AND   
 Aspect ratio is Medium AND   
 Habitat is Demersal THEN Low  
      
18 IF Maximum body length is Small AND   
 Aspect ratio is Low AND   
 Habitat is Demersal THEN Low  
      
19 IF Maximum body length is any set AND   
 Aspect ratio is any set AND   
 Habitat is Reef-

associated 
THEN Low  

      
20 IF Maximum body length is any set AND   
 Aspect ratio is any set AND   
 Habitat is any set AND   
 Life style is Sedentary THEN Zero  
      

 

 



 

 

49 

Appendix 3 

Numerical solution of the diffusion-advection partial differential equation (based on Sibert & 
Fournier 1993). 
 
Larval dispersal through diffusion and advection processes is modelled by: 
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where Lav is relative abundance of larvae, t is time step, u and v are east-west and north-south 
current velocity parameters, respectively. x and y are displacement in east-west and north-south 
directions, respectively. D is the diffusion coefficient. The instantaneous rate of larval mortality 
and settlement is represented by λ = M + S, where M and S are the natural mortality and 
settlement (thus leaving the pelagic water layer) rates of larvae respectively. 
 
Equation A1 can be approximated by: 
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Solving equations with implicit alternating direction method (Press et al. 1988), the east-west 
movement at the first half time-step (t + 1/2) is expressed as: 
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The north-south movement at the next half time-step (t + 1) is expressed as: 
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Equations A3 and A4 can be expressed as tridiagonal matrices in the form: 
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where k = t + ½; and 
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The coefficients a, b, c, d, e, f represent the terms in blankets in equations A3 and A4 while 
coefficients g and h are the right-hand-sides of eq. A3 and A4. g and h must be calculated at each 
time step as they depend on larval abundance (Lavi,j,t and Lavi,j,t+1/2).  Since our model covers the 
entire world oceans, all potential marine habitats for the species are covered. Therefore, we 
assume closed impermeable boundaries around islands and along coastlines. At the boundaries,  
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(Sibert et al. 1999). 
 
Moreover, to allow the potential for transportation of larvae around the world, we assume 
periodic boundary condition at the limits of the north-south and west-east extends of our maps. 
 
The tridiagonal systems of equations can be solved by the recursive algorithm (Press et al. 1988) 
to obtain Lavi,j at time steps t + ½ and t. 
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CHAPTER 2 

 

MODELLING SEASONAL DISTRIBUTION OF PELAGIC MARINE FISHES 
AND SQUIDS2 

 
Vicky W.Y. Lam, William W. L. Cheung, Chris Close, Sally Hodgson, Reg Watson and 

Daniel Pauly 
 

Sea Around Us Project, Fisheries Centre, Aquatic Ecosystems Research Laboratory, 2202 Main 
Mall, The University of British Columbia, Vancouver, British Columbia, Canada. V6T 1Z4. 

 

ABSTRACT 

The distribution of pelagic marine fishes and invertebrates varies seasonally. However, 
information on the seasonal variation of the distribution of most pelagic marine fishes and 
invertebrates is scarce. In this paper, seasonal changes in distribution ranges of commercially 
exploited pelagic fishes and invertebrates are predicted based on the existing Sea Around Us 
Project distribution, a prediction algorithm, the correlation between seasonal changes in north-
south boundaries and sea surface temperature. In the northern hemisphere, in summer (July to 
September), mobile pelagic marine species tend to migrate to the northern part of their 
distribution range to avoid excessive temperature near the equator, while in winter (January to 
March), the same species will migrate southward to avoid the low temperature at higher latitudes. 
The converse applies to the southern hemisphere. The resulting distributions can improve the 
prediction of temperature preference profile of pelagic species which are important in evaluating 
the effects of global warming on their distribution ranges.  However, this method of predicting 
summer and winter distributions of pelagic species can only be considered as an approximation 
as other factors such as food availability, salinity, rainfall and current are not included. On the 
other hand, such approximation appear reasonable, given the global scope of the application of 
the predicted seasonal distributions and the large number of evaluated species (> 16o). 
 

INTRODUCTION 

Temperature is a key factor affecting the physiology (e.g., reproduction, growth) and spatial and 
temporal distributions of marine fishes and invertebrates. For instance, Pörtner et al. (2001) 
shows that growth rates and fecundity decrease with higher latitude in the case of Atlantic cod 
(Gadus morhua) and common eelpout (Zoarces viviparus). Thus, marine ectotherms generally 
inhabit areas where temperature is favorable for their physiological processes. Also, the northern 
and southern boundaries of a particular species are determined by the water temperatures 
suitable for survival and reproduction. Such boundaries may fluctuate according to seasonal 
changes in temperature. Thus, in the northern hemisphere, the northern boundaries may shift 
southward in winter and northward in summer (Hutchins 1947), and conversely, in the southern 
hemisphere. 
 
The correlation between distribution ranges and water temperature is a major factor determining 
the fluctuation in distributions of the highly mobile pelagic fishes and invertebrates. Many pelagic 
fishes and invertebrates have the ability to migrate over long-distance to find suitable habitats. As 
sea water temperature fluctuates seasonally and inter-annually, these species migrate to maintain 
physiologically suitable temperature in their surrounding water. For instance, Sardinella and 
                                                 
2 Cited as: Lam, V.W.Y., Cheung, W.W.L., Close, C., Hodgson, S., Watson, R. and Pauly, D. 2008. Modelling seasonal 
distribution of pelagic marine fishes and squids, p. 51-62. In: Cheung, W.W.L, Lam, V.W.Y., Pauly, D. (eds.) Modelling 
Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. Fisheries Centre Research Report 16(3). 
Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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other pelagic fishes migrate northward and southward, along the Northwest African coast such 
that they remain at the same temperature, despite strong seasonal fluctuation (Pauly 1994). 
Similarly, tuna and billfish migrate according to changes in sea surface temperature (SST) 
(Buxton & Smale 1989). Higher catch rates of yellowfin tuna (Thunnus albacares) and bigeye 
tuna (Thunnus obesus) were found in regions where SST increased during El Niño and La Niña 
periods (Lu et al. 2001).  Specifically, yellowfin tuna displayed movements from tropical to higher 
latitude when temperatures in the tropical regions were low i.e. during La Niña periods.  
 
Given seasonal sea water temperature data, it is possible to predict intra-annual changes in 
distribution of marine pelagic fishes and invertebrates. The Sea Around Us project predicted 
annual average distributions of over 1,230 commercial marine fishes and invertebrates, of which 
over 190 were pelagic species (www.seaaroundus.org). Distributions of the species were predicted 
based on existing knowledge of species’ north-south latitudinal ranges, depth ranges, affinities to 
habitats, and known distribution boundaries from published literature (Close et al. 2006). 
Assuming that species’ north-south latitudinal boundaries are correlated with sea water 
temperature, their geographic ranges should shift northward and southward as sea water 
temperature fluctuates seasonally. 
 
Predicting seasonal distributions of pelagic marine fishes and invertebrates allows more accurate 
modelling of climate change impacts on these species. A dynamic bioclimate envelope model was 
developed to predict changes in geographic range of marine fishes and invertebrates under 
climate change scenarios (see Cheung et al. this vol.). This model is based largely on species 
temperature preference, as inferred from predicted species distributions. Assuming that highly 
mobile pelagic fishes and invertebrates migrate seasonally according to water temperature, 
ignoring such seasonal migration would over-estimate the temperature limits of the species and, 
thus under-estimate the impacts of sea water warming. Thus, the temperature preference of a 
species can be more accurately predicted if seasonal distributions are available. However, since 
data on seasonal distributions of the majority of marine fishes and invertebrates are lacking, 
predictions of seasonal distributions have to be based on some simple, but sensible, assumptions 
that allow application to a wide range of species. This is essentially the objective of this study. 
 
This paper documents an algorithm to predict seasonal changes in distributions of mobile marine 
fishes and invertebrates. The algorithm based on simple assumptions of correlation between 
seasonally (summer and winter) changes in species’ north-south latitudinal boundaries and 
fluctuation in sea water temperature. We apply the algorithm to predict distributions of 
commercially-exploited pelagic fishes and invertebrates. We illustrate the results from the 
algorithm with examples, and we discuss its pros and cons  and its potential applications. 
 

METHODS 

We developed an algorithm that can predict the seasonal distribution of marine pelagic fishes and 
invertebrates. This algorithm was modified from the species distribution prediction model 
presented in Close et al. (2006). The details of the algorithm, together with its theoretical basis 
and assumptions, are summarized in the followings: 
 
We assume that the north-south latitudinal limits of species’ geographic ranges change according 
to ocean temperature in different seasons. The monthly average sea surface temperature data 
from 1956 to 2006 was obtained from Met Office Hadley Centre observation datasets (Rayner et 
al. 2007). The average annual sea surface temperature data within this period were computed.  
Two seasons were considered: summer and winter. In the northern hemisphere, summer includes 
July to September and winter includes January to March. On the other hand, Austral summer and 
winter are January to March and July to September, respectively. Globally, average sea water 
temperature at each latitudinal zone increases in summer and decreases in winter. As highly 
mobile fishes and invertebrates generally attempt to occupy regions with their preferred sea water 
temperature, we assume that their southern range boundaries move northward in summer to 
avoid the excessive temperatures near the southern boundary. In winter, their northern range 
boundaries move southward to avoid sea water temperature at the northern boundary being 
under the species’ physiological limits. Also, the contrast between summer and winter 
temperature increases towards higher latitude (Figure 1). Thus, the extent of seasonal shifting in 
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north-south range boundaries should be higher in higher latitude as species must migrate further 
in higher latitude to maintain similar temperature in their surrounding water.  

 

We assume that the centroid of the distribution range also shifts according to temperature. 
Theoretically, the centroid of a species distribution range generally overlaps with regions where 
environmental conditions (e.g., sea water temperature) are optimal for the species (MacCall 
1990). Thus, we assume that the average temperature at the latitudinal position of the centroid is 
close to the optimal preferred temperature of the species. We further assume that when 
latitudinal gradients of sea water temperature shift seasonally, the centroid of the distribution 
range shifts accordingly. Moreover, the mid-point between the centroid of the distribution range 
and the north/south range boundary shifts according to temperature. Predicting the seasonal 
shift in positions of the centroid, range boundaries and the mid-points centroid and range 
boundaries allow us to calculate seasonal distributions of the species. Longitudinal and vertical 
movement are not considered here, as these are not generally observed in large-scale seasonal 
migration patterns of pelagic marine fishes and squids. 
 
We determined the maximum potential shift in centroid and the mid-point based on the annual 
average distribution of a species, and the annual and seasonal sea surface temperature with such 
distribution. Firstly, the latitudinal position of the centroid of species’ annual average relative 
distribution, C (Annual), was calculated from: 
 

 

Figure 1. Magnitude of the change in sea surface temperature between summer and winter latitude. 
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where Ai is the species relative abundance in each spatial cell on the map, Li is the latitudinal 
coordinate of the cell, and n is the total number of cells within the species’ geographic range. 
When calculating the latitudinal position of the mid-point, we only include the cells lie within the 
distribution range between the centroid and northern/southern boundary. The latitudinal 
position of the mid-point, MP(Annual),  was computed from: 
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where m is the total number of cells within the distribution range between the centroid and the 
northern or southern boundary.  
 
Secondly, we calculated the annual average sea surface temperature at C(Annual) and 
MP(Annual). The temperature at C(Annual) is assumed to be the optimal (preferred) temperature 
by the species Ta. Moreover, we calculated the average sea surface temperature within the species 
range by latitudinal bands (every 30’) for each season (summer and winter). The latitudinal 
positions of the centroid in summer and winter, i.e., CS’ and CW’, respectively, were assumed to be 
the latitudinal bands with average temperature that was closest to the optimal preferred 
temperature Ta. Thus, the maximum potential shift in centroid’s latitudinal position was 
calculated from: 
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where CSs ‘ and CSw’  are the maximum potential shift in centroid’s latitudinal positions in 
summer and winter, respectively. The latitudinal position of the mid-point in summer and winter 
i.e., MPS’ and MPW’, were assumed to be the latitudinal bands with temperature closest to the 
temperature at MP(Annual). In summer, MP(Annual) was calculated from the latitudinal values 
of the centroid and the southern bound i.e. MPS. In winter, MP(Annual) was calculated from the 
latitudinal values of the centroid and the northern bound i.e. MPW. The maximum potential shift 
in the latitudinal position of the mid-point was calculated from: 
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where MSs’  and MSw’ are the maximum potential shift in the latitudinal positions of the mid-
point in summer and winter, respectively.  
 
The actual shifts in latitudinal positions of the centroid and the mid-point were determined by the 
motility of the species. Species’ motility was represented here by a ‘motility index’ (MI). This 
index was calculated by using a fuzzy logic expert system that determines species’ motility from 
species’ maximum body length and aspect ratio of caudal fin (i.e., the ratio between the square of 
the height of fish’s caudal fin to the caudal fin area) (Cheung et al. this vol.). As aspect ratio is not 
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available for invertebrates, ordinal levels representing the motility (Sedentary = 1; Low motility = 
2; motility = 3; motility = 4) was assigned for each species (see Cheung et al. this vol. for details). 
The calculated motility index scales from 0 to 100. Higher index value indicates higher motility, 
i.e., higher ability to move, and vice versa. 
 
Combining the estimated maximum potential centroid shift and the motility index, we 
determined the actual seasonal shift in centroid of species distribution range: 
 

100
'

MI
CSCS ⋅=  … 5) 

 
where 'CS  is the actual shift in centroid of the distribution range (in degree) and MI is the 
motility index. Similarly, the actual seasonal shift in the mid-point was calculated by: 
 

100
'

MI
MSMS ⋅=  … 6) 

 
where 'MS  is the actual shift in the latitudinal position of the mid-point (in degree).  
 
Species’ latitudinal range limits shifted according to the seasonal shifts in centroid and the mid-
point. The latitudinal limits delineated the maximum latitudinal range of the species. Thus, the 
northern and southern range limits should represent the occurrence limits in summer and winter 
respectively. We assume that the actual shift in the range boundaries of the species (AS) is the 
average of the actual shift in the latitudinal positions of the centroid and the mid-point. This value 
was calculated as: 
 

( )
2

'' MSCS
AS

+
=  … 7) 

 
For species with motility index equal to 100, the northern and southern boundaries of the species 
will change by the average latitudinal shift of the centroid and the mid-point. In summer, a 
species moves northward within its total distribution range.  
 
Thus, in the northern hemisphere, the southern range limits would shift northward in summer 
and the northern range limits would shift southward in winter. The northward shift in southern 
range limit in summer is calculated from: 
 

ASSLSL +='  … 8) 

where SL’ is the latitude of the southern bound in summer, SL is the latitude of the original 
southern bound and AS is the actual shift in distribution range in summer. 
 
Similarly, southward shift in winter in the northern range limit was calculated by: 
 

ASNLNL +='  … 9) 

where NL’ is the latitude of the northern bound in winter, NL is the latitude of the original 
northern bound. A schematic diagram of the simulation of range shifting is illustrated in Figure 2. 
 
The calculated seasonal latitudinal boundaries were then used to generate geographic distribution 
for pelagic fishes and invertebrates using the method documented in Close et al. (2006). 
 



 

 

56 

 

 

Figure 2a. Schematic diagram showing latitudinal shift in centroid and the mid-point of the distribution range 
between the centroid and the northern/southern boundary (see text). 
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Figure  2b Schematic diagram showing latitudinal shift in the distribution range (see text). 

 

RESULTS 

In the Northern hemisphere, the distribution of species shifts to the northern part of their ranges 
in the summer, whereas the species move to the southern part of their ranges in the winter (and 
conversely in the Southern hemisphere). The extent of the summer movement may not be 
necessarily the same as that of the winter movement. Species with longer bodies and higher 
aspect ratio have a higher capability of shifting to the extreme ends of their ranges with changes 
in seasonal temperature. Species with smaller bodies and lower aspect ratio of their caudal fin, 
have a lower motility and their distribution ranges remain more or less the same in summer and 
winter.  We illustrate these general results in the following case studies. 
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Common dolphinfish (Coryphaena hippurus) 
 
The annual distribution range of common dolphinfish extends from 45°N to 38°S. Our model 
predicted the northward shift of southern boundary of common dolphinfish from 38°S to 30°S in 
summer and the southward shift of the northern boundary from 45°N to 41°N in winter (Figure 
3). In the northern summer, the species migrates largely to the northern hemisphere. On the 
other hand, the southern boundary extends back into the southern hemisphere in the northern 
winter while the northern boundary moves slightly southward, e.g. to avoid the cold temperature 
of the Adriatic Sea in winter.   
 
Common dolphinfish has a high motility index, (= 100), Thus, the shift in boundaries is equal to 
the entire latitudinal shift of the centroid.  
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Figure 3. Shift in distribution range of Common dolphinfish in different seasons. (a) Southern boundary shifts 
northward in summer (b) Northern boundary shifts southward in winter (c) annual distribution range. The 
straight line on each map marks the equator. 
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Serra Spanish mackerel (Scomberomorus brasiliensis) 
 
This species which has a high motility index (= 77) is distributed along the Caribbean and Atlantic 
coasts of Central and South America from Belize to Rio Grande do Sul, Brazil. The latitudinal 
range of its annual distribution extends from 20°N to 35°S. Our model predicts that the southern 
boundary shifts from Rio Grande do Sul to northern coast of Santa Catarina region, Brazil (28°S) 
in northern summer (Figure 4). In northern winter, the northern boundary shifts from Belize to 
Nicaragua (13°N).  
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Figure 4. Shift in distribution range of Serra Spanish mackerel in different seasons: (a) southern boundary shifts 
northward in summer, (b) northern boundary shifts southward in winter, and (c) annual distribution range. 
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Plain bonito (Orcynopsis unicolor) 
 
The plain bonito (motility index = 80) occurs only in the northern hemisphere; its distribution 
range extends from Bay of Biscay (49°N) to Dakar, Senegal (14°N) (Figure 5). To avoid the 
excessive summer temperature near the equator in northern summer, the species’ southern 
boundary shifts northward from Dakar (14°N) to the south of Morocco (22°N). In northern 
winter, the centroid of the distribution shifts southward from south coast of Portugal to the coast 
of Morocco.  
 
 

 

  

 

Relative abundance

0

>0 - 0.032

>0.032 - 0.085

>0.085 - 0.15

>0.15 - 0.22

>0.22 - 0.3

>0.3 - 0.38

>0.38 - 0.48

>0.48 - 0.57

>0.57 - 0.65

>0.65  

Figure 5. Shift in distribution range of Plain bonito in different seasons: (a) southern boundary shifts northward in 
summer, (b) northern boundary does not change in winter, and (c) annual distribution range. 
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DISCUSSION 

The distribution ranges of all pelagic fishes and squids are largely dependent on seasonal 
variations of sea surface temperature (SST). Each species has a specific range of temperature over 
which the population remains viable. The seasonal migration of these species can be viewed as a 
strategy to maximize fitness in different seasons (Alerstam et al. 2003). Thus, if possible, the 
species may move to area where water temperature remains within their preferred range. 
However, long-range migration may not be possible for all species because of limitations in 
motility. Of the over 1,200 species considered in this study, 116 pelagic species have motility index 
equal to zero, too low for any seasonal migration to be visible at the scale of this study (i.e., 30’ lat. 
x 30’ long.).  
 
The predicted seasonal distributions corroborate with observed seasonal migration patterns of 
the studied species. Common dolphinfish (Coryphaena hippurus) shows seasonal abundance in 
many tropical and subtropical areas (Massuti & Morales-Nin, 1994, Kraul, 1998). For example, 
catch records of common dolphinfish show that the adult migrates northward during spring and 
summer from their wintering grounds in the tropical areas of Atlantic Ocean (Massuti & Morales-
Nin, 1994). The species reaches its peak abundance in October in the Mediterranean and 
decreases again from late November. Many authors suggest that temperature is the controlling 
factor for the seasonal migration of common dolphinfish and the shift between north and south is 
correlated with the 23°C isotherm (Kraul, 1998). This 23°C isotherm approaches 36°N in August 
but goes down to 19°N in February (Kraul, 1998). Some studies also suggest that the peak 
abundance of Common dolphinfish is found in area with SST of about 25 – 28°C (Massuti & 
Morales-Nin, 1994). These agree with the temperature preference and migration patterns 
predicted from our model. 
 
A good match between observed and predicted seasonal migration pattern can also be found in 
serra (Scomberomorus brasiliensis) in northeastern Brazil. The abundance of serra increases 
along the Brazilian coast in March, but decreases continuously throughout July, August and 
September (Batista & Fabre, 2001). These observations agree with our model prediction, in which 
the southern boundary of the distribution range of serra shifts northward in summer. On the 
other hand, its distribution shifts to the northern part of its range in summer (July to September).  
 
The accuracy of the predicted seasonal distributions of pelagic species can be affected by other 
factors that can impact on the seasonal migration pattern of the species. A major assumption of 
our model is the importance of sea water temperature in determining seasonal migration 
patterns. However, other factors such as food availability, salinity, rainfall and current might also 
play an important role in the seasonal distribution pattern of species. Williams and Newell (1957) 
finds that the abundance of Common dolphinfish becomes high when the SST reaches 29°C along 
with low salinities, while its high abundance may also be due to the seasonal plankton. Moreover, 
oceanographic condition could affect spawning and migratory patterns of the species (Massuti 
and Morales-Nin 1995). However, given the global focus of our model, the large number of species 
from a wide range of groups that the model has to handle, and the limited availability of data for 
most of these species, the approximations in our model are unavoidable. Furthermore, model 
predictions appear to agree with the observed patterns of seasonal movement of pelagic species. 
In addition, the predicted seasonal distributions narrow the Temperature Preference Profiles 
(TPP) predicted from the maps of distribution range and sea water temperature. These predicted 
TPP are fundamental to the dynamic bioclimate envelope model developed to study the effects of 
climate change on distribution ranges of marine fishes and invertebrates (see Cheung et al. this 
vol.).  
 
In conclusion, marine pelagic species and squids shift to the northern or southern parts of their 
distribution ranges in summer and winter, respectively. These species migrate to areas where SST 
is optimal (or at least suitable) for their survival and reproduction. Predictions from the model 
can help us to understand the fluctuation in seasonal catch of marine pelagic species.  
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CHAPTER 3 

 

ASYMMETRY IN LATITUDINAL, LONGITUDINAL AND BATHYMETRIC 

DISTRIBUTION OF MARINE FISHES AND INVERTEBRATES3 
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Reg Watson 

Sea Around Us Project, Fisheries Centre, Aquatic Ecosystems Research Laboratory, 2202 Main 
Mall, The University of British Columbia, Vancouver, British Columbia, Canada. V6T 1Z4. 

 

ABSTRACT 

The distribution ranges of organisms, and marine animals in particular, are a manifestation of 
their environmental requirements, although they are often modified by the dynamics of prey and 
predators. Distribution range maps can also be used to infer where an activity occurs which 
requires the presence of a set of species, e.g., a fishery which targets them. 
 
The distribution of marine fishes and invertebrates serves as the basis for the mapping of fisheries 
by the Sea Around Us Project. Thus, accurate range maps are extremely important, and an earlier 
contribution by Close et al. (2006; FCRR 14(4): 27-37) reviews the step-by-step approach, and the 
assumptions used to predict the distribution of relative abundance of marine fishes and 
invertebrates from broad geographical limits, e.g., ocean basins, latitudinal limits, depth limits, 
etc., to relatively narrow polygons surrounding a number of ½ degree lat.-long. cells.  
 
Once established, such distributions, at least those referring to demersal fishes and invertebrates, 
can be interfaced with a map of sea bottom temperature, and inferred temperature preference 
profiles (TPP). These can be used, among other things, to verify the distribution ranges as 
predicted distributions should generate unimodal TPP, with the bulk of the distributions 
spanning a narrow range of temperature (~100 Celsius). 
 
As a relatively large fraction of the TPP that we obtained at first appeared bimodal, or exhibited a 
strong kurtosis, the assumption was revisited that the distribution of a species with regard to 
latitude can be simulated by an equal-sided triangle. It is shown here, for the cod (Gadus 
morhua), and generally for all our over 900 demersal species, that assuming a skewed triangular 
distribution, whose degree of skew is proportional to the temperature gradient from low to high 
latitude, generates more realistic distributions when compared to observed species distribution 
maps, although the narrowing of the uni-modal temperature probability distributions is relatively 
small. This correction will be implemented in all distribution ranges of demersal fishes and 
invertebrates in the Sea Around Us database, and used for catch allocation, and inferences on 
climate shifted distributions due to climate change.  

                                                 
3
 Cited as: Pauly, D., Cheung, W.W.L., Close, C., Hodgson, S., Lam, V.W.Y. and Watson, R., 2008. Asymmetry in 

latitudinal, longitudinal and bathymetric distribution of marine fishes and invertebrates, p. 63-72. In: Cheung, W.W.L, 
Lam, V.W.Y., Pauly, D. (eds.) Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. 
Fisheries Centre Research Report 16(3). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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INTRODUCTION 
 
The distribution range of organisms is, besides their size, the feature that is most informative 
about their biology.  Size largely determines the kind of prey and predators which that organism 
can have (Pauly & Christensen 2002).  The distribution, on the other hand, informs us of the 
temperature, depth, seasonality, etc., in which they are equipped to live (Helfman et al. 1997). 
 
Distribution ranges are also used for practical purposes. In the Sea Around Us Project, predicted 
distribution ranges are used to map fisheries catches (Watson et al. 2004). As fisheries maps can 
be improved by the underlying fish distribution ranges, the Sea Around Us Project has worked 
continuously at improving these ranges, and the last version of the predicted distribution ranges 
are all available at (www.seaaroundus.org). In Close et al. (2006), we reviewed the methods and 
assumptions used therein, which can be seen as a set of filters:  
 

1) FAO area: the fish and invertebrates covered in the Sea Around Us database are assigned 
(or were pre-assigned by FishBase, or FAO) to one or several of the 18 FAO area where 
they occur;  

2) Latitudinal range: defined by the northern and southern limits of the distribution, whose 
relative abundance distribution is assumed to be triangular, with a maximum at the 
latitude midrange (i.e., symmetry is assumed; see below); 

3) Range limiting polygon: originating from various sources, and preventing the range from 
‘spilling over’ into water bodies which satisfy (1) and (2), but which are known to have 
attributes preventing them from being part of the distribution (e.g., low salinities); 

4) Depth range: defined by shallow and deep limits, with the density of the distribution in 
between represented by an asymmetrical triangular distribution, with a maximum at 30% 
of the depth range, thus accounting for larger depth-related changes in shallow than in 
deep water. Also, we correct for some of ‘equatorial submergence’ (Ekman 1967) not 
discussed here, except to mention that this effect is also assumed to be asymmetrical with 
regard to depth; 

5) Assignment with regard to habitats (shelves, estuaries, seamounts, etc.). This is not 
further discussed because this does not concern the point to be made here. 

 
These procedures lead to 
distribution range maps from which 
various inferences can be drawn, 
notably the temperature preference 
of the fish, since temperature is not 
used directly in any step in this 
process.  Thus, when distribution 
ranges are mapped onto a 
temperature atlas, a temperature 
preference profile (TPP) can be 
inferred whose mode should 
indicate the preferred temperature 
of the animal in question, while the 
flanks indicate the normal 
temperature range of the species 
(see Figure 1, for an example). 
 
However, a large number of TPP obtained by this method are bi- or multi-modal, while another 
set of TPP displays extreme kurtosis. Such patterns are not realistic, because marine fish and 
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Figure 1. A temperature preference profile (TPP) of the Small 
yellow croaker (Larimichthys polyactis, Sciaenidae) inferred 
from the predicted species distribution and sea bottom 
temperature (the latter obtained from Met Office Hadley Centre 
observations datasets; http://hadobs.metoffice.com/hadisst/). 



 

 

65 

invertebrates usually have one temperature optimum, i.e., one mode in a more or less 
symmetrical, bell-shaped distribution with regard to temperature (Coutant 1987). 
 
We have examined which of the above steps and assumptions of the method of Close et al. (2006) 
could generate these bi- or multi-modal TPP, and identified Step 2 and 3 above, i.e., the 
assumptions of symmetrical triangular distribution with respect to relative abundance along 
latitudes, and abruptly-cut range boundary imposed by polygons, respectively, as the likely 
culprit.  
 
First, the latitudinal distribution of relative abundance should be asymmetrical (step 2). As the 
underlying environmental variables which affect distribution range are unevenly distributed, 
uneven gradients of density of animals should be observed (MacCall 1990). For marine 
ectotherms, temperature is one of the most important parameters affecting their distributions 
(Coutant 1987; Pörtner 2001). Thus, the assumption of a symmetrical triangular distribution 
which is probably correct at low latitudes, where the isotherms are widely spaced, would become 
incorrect at higher latitudes (around 40o N/S), where the isotherms are close to each other 
(Figure 2).  
 
To represent such asymmetry in latitudinal-temperate gradient, instead of the symmetrical 
triangular distribution described in Close et al. (2006), we should employ asymmetrical 
triangular distribution, with the degree of skewness being a function of the closeness of the 
latitudinal isotherms. 
 
Also, range boundaries should 
not be abruptly cut (Step 3). This 
problem arises when portions of 
the potential distribution ranges 
are excluded by polygons that are 
constructed from known 
distribution range of the species. 
Thus, relative abundance at the 
edge of the distribution range 
may become discontinuous in 
terms of the environmental 
gradients. However, such abrupt 
change in abundance at boundary 
of a range is rarely observed in 
the sea. This phenomenon is 
particularly apparent for pelagic 
species whose predicted 
distribution ranges are strongly 
affected by the polygons. Thus, a 
gradient of relative abundance 
should be applied to the polygon 
boundary to make the predicted distribution range more realistic. 
 
This paper describes the algorithms that improve on the above two assumptions in predicting 
species distribution range, i.e., latitudinal asymmetry in relative abundance distribution and 
gradient of relative distribution at range boundaries. We compare the predicted distribution 
ranges and TPP of selected species to evaluate the effects of implementing the new algorithms. 
 
 

 
Figure 2. Differences in sea surface temperature between 
latitudinal zones of the world ocean.  
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METHODS 
  
Latitudinal asymmetry 
 
The distribution of relative abundance along latitude was assumed to be triangular-shaped and 
the mode (peak) of the triangular distribution was assumed to be determined by the steepness of 
the latitudinal-temperature gradient at range limits. To determine the latitudinal position of the 
peak, we first constructed a profile of temperature-gradient index (Figure 3a and b for the 
northern and southern hemispheres, respectively) approximated from the observed sea surface 
temperature gradients (see Figure 2). The temperature-gradient index represents the marginal 
changes in temperature by latitude and scales from 0 to 1, with 1 indicating maximum changes in 
temperature. The profiles are represented by trapezoidal distribution. Latitudinal zones between 
40.75o and 42.25o in the northern hemisphere and 42.25o and 43.75o in the southern hemisphere 
have the maximum temperature-gradient index values of 1, from where the index decreases 
linearly to the equator and poles (Figure 3). For example, the northern and southern latitudinal 
limits of Atlantic cod (Gadus morhua, Gadidae) are 35o and 78o. Based on the temperature-
gradient index profile (Figure 3a), the corresponding temperature-gradient index values are 0.86 
and 0.25, respectively. 
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Figure 3. Temperature-gradient index by latitude in (a) northern hemisphere 
and (b) southern hemisphere. The broken lines on (a) indicate the northern 
(78o) and southern (35o) latitudinal limits of Atlantic cod. 

 
Secondly, the degree of skewness of the triangular latitudinal-relative abundance distribution is 
determined by the difference in temperature-gradient index between the north and south 
latitudinal range margins. We assume that relative abundance declines more rapidly towards the 
range margin with steeper temperature gradient. The degree of skewness (Skew) is calculated 
from: 
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and the latitudinal position of the peak of the triangular latitudinal-relative abundance 
distribution is (LP): 
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where a and b are constants that determine the maximum and minimum degree of skewness; TG 
is a function to calculate the temperature-gradient index at the upper and lower latitudinal limits 
(LU and LL, respectively). The default values of a and b are 0.5 and 0.3, respectively. Since 
temperature-gradient tends to be steeper at mid-latitude (around 40o N/S), the calculated 
latitude-relative abundance distributions will also skewed towards the mid-latitudinal zone 
(Figure 4). For example, given the LU and LL of Altantic cod (78o and 35o N), the calculated S is 
0.68 and the peak of the triangular distribution is at 48.7o N (see distribution c in Figure 4).  
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Figure 4.  Asymmetric triangular relative abundance – latitudinal distributions 
generated from three sets of latitudinal range limits: (a) 0o – 20o N, (b) 0o – 40o N, and 
(c) 35o – 78o N. 

 
This algorithm applies to distribution ranges that cover either the northern or southern 
hemisphere only, or across the equator with a bimodal latitudinal distribution. The latter is 
represented by two triangular distributions in each hemisphere which extend from the equator to 
its northern and southern latitudinal limits. Equatorial species with ranges covering across the 
equator are assumed to have a symmetrical triangular latitudinal-relative abundance distribution 
(Close et al. 2006). 
 
 
Abundance gradient at polygon boundaries 
 
We apply a gradient of abundance for distribution range boundaries of a species, as delineated by 
pre-specified polygons. We assume a trapezoid distribution to each segment of spatial grid within 
a polygon along the same latitude and longitude (Figure 5). Along a seaward polygon boundary, 
we assume that relative abundance declines linearly from a maximum at 1/5 of the segment 
length away from the boundary to zero at the boundary edge. If the polygon boundary is land-
bounded, we assume a steeper relative abundance gradient that declines from 1/20 of the 
segment length away from the boundary edge with relative abundance being half of maximum at 
the boundary (see Figure 5). In addition, the minimum lengths of the gradient at seaward and 
landward boundaries are 10 and 5 spatial cells, respectively. 
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Figure 5. Schematic diagram showing the distribution of relative abundance 
along the same latitude with a specified polygon. The gradient of relative 
abundance at the boundary edge is dependent on (1) whether the edge is sea- or 
land- bounded, and the length of the segment (d). The distances d(S) and d(L) 
are set as 1/5 and 1/20 of d. Also, at the seaward boundary, the relative 
abundance at the edge is zero while, at the landward boundary, the relative 
abundance at the edge is half of the maximum relative abundance. 

  
 
Application examples 
 
To test the effects of these new assumptions, we applied the algorithms on latitudinal asymmetry 
and abundance gradient at polygon boundary to two species: Atlantic cod (Gadus morhua) and 
Atlantic herring (Clupea harengus). We generated predicted distribution maps of the two species 
with the original routine documented in Close et al. (2006) and the routine with the modified 
assumptions and algorithms as described above. We superimposed the distributions of Atlantic 
cod and Atlantic herring on maps of sea bottom and sea surface temperature, respectively (Met 
Office Hadley Centre observations datasets, http://hadobs.metoffice.com/hadisst/). We also 
constructed TPP from the two sets of maps and compared their validity based on uni-modality 
and variance of the TPP. 
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RESULTS 
 
Based on visual inspection, the new algorithms provided a predicted distribution of Atlantic cod 
that appears to be a closer match to reality (Figure 6). Distribution range of cod predicted from 
the original Close et al. (2006) algorithm centers at higher latitude (Figure 6a and c). The new 
distribution for cod, predicted from a latitude-abundance distribution that is skewed towards 
lower latitude (Figure 6b and d), has centers of abundance at the Grand Bank, Newfoundland 
coast, southern parts of Greenland, Iceland, and around Faroe Island.  
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Figure 6. Predicted distribution ranges and the underlying assumptions on the latitudinal gradient of 
relative abundance of Atlantic cod with (a, c) symmetric triangular distribution and (b, d) asymmetric 
triangular distribution of relative abundance. 
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a) 

 
b) 

 
 
Figure 7. Predicted distribution ranges of Atlantic herring predicted with (a) the original Close et al. 
(2006) algorithm and (b) with additional assumption on abundance gradient at the edge of specified 
polygons. 

 
Application of the abundance gradient at the edge of polygons eliminated the unrealistic 
boundary with abrupt drop in relative abundance of Atlantic herring (Figure 7). For example, 
adjacent to the southern coast of Iceland, the distribution range predicted from the original Close 
et al. (2006) algorithm results in an abrupt drop in relative abundance from medium level to zero 
at the range boundary (Figure 7a). In the case of the revised algorithm, the predicted distribution 
shows gradual decline in relative abundance towards the boundary edge (Figure 7b). 
 
Temperature profiles, or TPP, obtained from the revised algorithms appear slightly more uni-
modal than TPP obtained from the original Close et al. (2006) algorithm (Figure 8). With the 
revised algorithm, the relative abundance of Atlantic cod is more concentrated near sea bottom 
temperature of around 2 o C (Figure 8a), while the abundance of Atlantic herring is more 
concentrated at sea surface temperature of around 9 o C (Figure 8b). 
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Figure 8. Temperature Preference Profile (TPP) of Atlantic cod calculated based on 
the distribution ranges that are predicted from the revised algorithm (solid line) and 
the original algorithm described in Close et al. (2006).  

 
 

DISCUSSION  
 

While the procedure proposed here may seem ad hoc, it actually corrects for an inconsistency in 
our treatment of distribution range maps which we had overlooked earlier. With regard to depth, 
we had taken asymmetry into account, i.e., we had considered that, e.g., a 10 m depth change has 
a much stronger effect at shallow than at great depth. The correction suggested here does the 
same with latitude, as a 10 change of latitude in temperate areas implies a greater change of 
environmental parameters (especially temperature) than in tropical areas. This correction to our 
distribution ranges will be fully implemented in our next catch allocation (i.e., the update from 
time series that end in 2004 to series ending in 2005). 
 
Although the improvement in the predicted TPP in terms of uni-modality and variance of the 
distribution from considering distributional asymmetry is relatively small, the predicted 
distributions appear more realistic when compared to observed species distribution maps. 
Realistic distribution maps are pre-requisites of simulating changes in distribution range under 
global climate change scenarios (see Cheung et al. this vol. for details).  
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