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DIRECTOR’S FOREWORD 

Many believe ‘forage’ fish to consist of species suitable only for reduction to fishmeal and fish oil, and that 
they are abundant, and therefore can be fished without regard to other components of the ecosystem, 
including marine mammals and seabirds. This document highlights that the term ‘forage’ fish is, mostly, 
another name for the sardine, anchovies, mackerels and other fish which are traditionally consumed in 
various cultures. Indeed, they represent a crucial component to the food security for many poor people, 
especially in developing countries. These fish, moreover, play an important role in marine ecosystems, as 
they mediate the transfers between plankton and the predators on top of marine food webs. In the process, 
they also transfer persistent organic pollutants (POP), for example dioxin, up the food web. Finally, they 
are key to the development of the aquaculture sector, and the continued affordability of intensively 
produced animal protein, whether tainted with POP or not. 

This is the first study that integrates and presents a comprehensive, global view of forage fisheries, 
specifically: trends in catches since the 1950s; how landings are used by humans including consumption, 
trade and use in food production; the interaction between forage fisheries and humans and marine 
animals; and the link to a POP (dioxin) deposition into the ocean. This report is also the first to estimate 
the consumption of fishmeal in the aquaculture sectors of various countries since 1975, when global feed 
databases were initiated.  

The catch trends of forage fisheries were analysed, highlighting that, in Europe, fish targeted for reduction 
change, with new species replacing those that are fished out, while in Latin America and the United States, 
the stocks are considered to be fully exploited. Also, there is little scope for finding new stocks to increase 
fishmeal and fish oil production. Moreover, while the industrial fleets of the world are ‘fishing down 
marine food webs’, the aquaculture sector, which increasingly feeds fishmeal even to herbivorous species, 
is ‘farming up marine food webs’, with the average trophic level of fish used in the feed itself increasing.  

Small and medium pelagic fishes–i.e., forage fish–are a source of relatively cheap protein for several 
African nations, and thus, when the fisheries in question decline, the food security of people is at risk. 
Fishmeal and fish oil are key ingredients in feeds for aquaculture, and will in part determine the level of 
expansion of carnivorous aquaculture until alternatives are found. Expansion of aquaculture will be at the 
expense of intensively produced poultry, and will ultimately impact consumers in the market place. 

Forage fish are also important as prey for marine mammals and seabirds. This document dispels the 
argument that marine mammals compete with commercial forage fisheries in more than a few areas of the 
world; also, the demonstration is made that there is virtually no overlap between seabirds and commercial 
fisheries. On the other hand, there are indications, albeit limited, that marine mammals and seabirds are 
impacted by commercial fisheries.  

This is the first study to model the atmospheric deposition of dioxin in marine systems, and then simulate 
its uptake by various organisms. When combined with information on where forage fish are caught, 
processed and traded, this leads to a picture of the global human food systems in which POP can appear at 
any location and in any guise—a worrying thought.  

This report is a joint effort by many members of the Sea Around Us Project, who have authored its various 
chapters. This report thus demonstrates the interdisciplinary nature of the Sea Around Us Project and its 
ability to synthesize information from a wide variety of sources into a coherent whole, the story of the 
world’s largest fishery. I take this opportunity to thank Brooke Campbell for her assistance in producing 
the graphs and layout of this report. 

 

Daniel Pauly,  

August 2006 
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EXECUTIVE SUMMARY 

Jackie Alder and Daniel Pauly 
Fisheries Centre, Aquatic Ecosystems Research Laboratory (AERL), University of British Columbia. 

2202 Main Mall, Vancouver, BC., V6T 1Z4, Canada 
j.alder@fisheries.ubc.ca ; d.pauly@fisheries.ubc.ca  

Forage fish are often described as the prey for other animals to forage on, and are composed primarily of 
small and some medium-sized pelagic fish. Forage fish are used directly for human food and reduced to 
fishmeal and fish oil for industrial purposes. These fishes tend to form large dense schools, which make 
them easy to catch using little fuel energy, especially in comparison with demersal fish, typically caught by 
bottom trawling. Small pelagics play a crucial role in most ecosystems because they are the group that 
transfers energy from the plankton to the larger fishes and marine mammals. The direct dependence of 
these relatively short-lived fishes on plankton, itself impacted by environmental fluctuations, often causes 
the biomass of these fishes to fluctuate. 

This has led many fisheries scientists to conclude that fisheries have little impact on small pelagics, as 
their abundance seems determined mainly by environmental factors. Presently their catch is about 32 
million tonnes per year, a staggering 37% of global marine landings. 

Most of this catch is used to produce fishmeal and fish oil for use in both agriculture and aquaculture. The 
aquaculture industry is increasing, especially the farming of carnivorous species, and requires increasing 
supplies of fishmeal and fish oil, met in part by an increase of the fraction of global fishmeal supply being 
diverted away from agriculture and, for some species, the human food supply, and by increasing the 
pressure on small pelagics, including species that were previously unexploited. 

The intense pressure on small pelagics has a number of consequences, notably a depletion of the food base 
of marine mammals and seabirds. Indeed this effect is so strong that it has become, in many parts of the 
world, a cause for the decline of seabird and marine mammal populations, e.g., as early as 1965 for 
seabirds in Peru, and currently for marine mammals in the Mediterranean.  

The growing concern over seafood quality for wild capture fish and indirectly, as inputs into intensive 
animal production, has prompted policy makers to look at levels of pollutants (e.g., dioxins) in farmed fish 
such as salmon as well as the levels of pollutants in fishmeal and fish oil. 

This report presents the results of various analyses of the uses of forage fishes by marine mammals and 
seabirds as well as direct and indirect use by humans. The analyses include investigation of long-term 
trends (1950 to the present), and include numerous displays based on the modeling and mapping 
approaches developed in the last five years by the Sea Around Us Project to illustrate where forage fish are 
subjected to pollutants, caught, traded, and used as human food or input to intensive animal production 
including aquaculture. 

We hope that the reader will appreciate that the observed trends cannot be reliably projected into the 
future, which must forever remain uncertain. What we can do–and have done—is to propose alternative 
scenarios, and to make their assumptions explicit. This provides us with a tool to evaluate existing plans, 
e.g., for large-scale expansion of those forms of aquaculture requiring massive input of fishmeal and/or 
oil. 

Forage fish are concentrated in a few regions of the world, but traded globally as human food as well as 
input into intensive animal production system. They are a factor in the current pricing of pork, poultry and 
farmed fish. Forage fish play an important role in the food security of many countries, but this role is 
under threat as the demand for forage fish plays an increasingly important role in feeding an expanding 
aquaculture sector. How forage fish will be affected by global climate change remains uncertain. However, 
with both El Niño events and ecosystem-wide collapses, such as occurred off Namibia, becoming more 
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frequent, declines in forage fish supplies are possible, with dire consequences for marine mammals and 
seabird populations, and economic effects that would reverberate across the globe. 

The process of concentrating the protein and essential oils of forage fish into fishmeal and fish oils also 
concentrates pollutants such as dioxins in these products, which are also traded globally. These pollutants 
continue concentrating up the food chain as fishmeal and fish oil are used as feed in the production of 
animal protein. The importance of forage fish in the food security of many coastal communities, their 
global importance in sustaining the aquaculture sector, and their potential to transport pollutants are 
sufficient reason to further our understanding of these fisheries, as attempted in this report. 

Jackie Alder, Senior Research Fellow, Sea Around Us Project, UBC Fisheries Centre 
Daniel Pauly, Principal Investigator, Sea Around Us Project, and Director, UBC Fisheries Centre 
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CHAPTER 1  

FISHERIES FOR FORAGE FISH, 1950 TO THE PRESENT 1 

Reg Watson, Jackie Alder and Daniel Pauly 
Fisheries Centre, Aquatic Ecosystems Research Laboratory (AERL), University of British Columbia. 

2202 Main Mall, Vancouver, BC., V6T 1Z4, Canada 
r.watson@fisheries.ubc.ca; j.alder@fisheries.ubc.ca; d.pauly@fisheries.ubc.ca 

ABSTRACT 

Following a brief historical review of the emergence of fisheries for forage fish that are primarily destined 
for reduction, and their competition with fisheries for human consumption, an account is given of landing 
trends in various parts of the world, and catch maps are provided for the 1970s and 2000s which allow 
spatial and temporal comparisons. A brief account is also given of the changing species composition of the 
landings, the exploitation status of the fisheries, the trophic levels trends of species destined for reduction, 
the fuel consumption of the global fleet exploiting forage fish which are primarily small pelagics, the 
fishing gear they use, and the ex-vessel prices they fetch.  

The discussion, finally, attempts to amalgamate this material, which is further discussed in the other 
chapters in this report.  

INTRODUCTION 

Historically, all fish that could be caught, including small pelagic fish, were used as a source of food for 
humans (see Chapter 2), and the reduction of fish to fishmeal and fish oil for indirect use is relatively 
recent. Seasonally abundant catches of herring and sardines, which could not be absorbed by local 
markets, started the fish oil industry in northern Europe and North America at the beginning of the 19th 
century (Huntington et al., 2004). The oil was used for lubrication of machinery and leather tanning, soap 
production and other non-food products, and the by-products of fish oil production were used as fertilizer.  

In the early 20th century the production of fishmeal for animal feed began in Northern Europe, based on 
Herring (Clupea harengus), and in North America, based on Atlantic menhaden (Brevoortia tyrannus) in 
Chesapeake Bay and South American pilchard (Sardinops sagax) in California. Once the benefits of 
fishmeal as an inexpensive feed supplement for animal production were realized and demand increased, 
the fisheries began to deliberately target fish for reduction to fishmeal, with fish oil more as a by-product. 
In the early 1950s, a huge reduction fishery for Peruvian anchoveta (Engraulis ringens) developed in Peru, 
then in Chile, which at first complemented, then replaced, the earlier indirect exploitation of this fish, in 
the form of guano produced by fish-eating birds (Muck and Pauly, 1987; Muck, 1989). 

In California, the benefits of fishmeal in the animal feed sector were quickly realized and demand for 
fishmeal with corresponding demands for increased landings raised concern over food supplies and 
sustainability of the industry (Radovich, 1981). The California legislature responded in the early 1920s 
with the introduction of legislation prohibiting the processing of fish for reduction if it was fit for human 
consumption. The controversial issue of competition between human and industrial consumption for raw 
material such as the ‘California sardine’ (which led to similar legislation in other areas and times) became 
moot when, due to excess fishing and the ‘changes in environmental conditions’ that are always evoked in 
such cases (see e.g., Radovich, 1981), catches peaked in the 1930s, and collapsed in the late 1940s, and the 
ghost of this fishery, through the works of John Steinbeck and Ed ‘Doc’ Ricketts, entered the realm of 
legend (Tamm, 2004).  

                                                 
1 Cite as: Watson, R., Alder, J., Pauly, D. 2006. Fisheries for forage fish, 1950 to the present, p. 1-20. In: Alder, J., Pauly, D. (eds.) On 
the multiple uses forage fish: from ecosystems to markets. Fisheries Centre Research Reports 14(3). Fisheries Centre, University of 
British Columbia [ISSN 1198-6727]. 
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The same scenario was replayed a few decades later, off Peru, where the annual catch of Peruvian 
anchoveta grew to 17 million tonnes (t) in 1970 (Castillo and Mendo, 1987), about 6 million t higher than 
the official catch of 12 million t–itself higher than recommended by experts at the time (Gulland, 1968; 
Murphy, 1967; Schaefer, 1967). The fishery collapsed in 1972/73, following an El Niño event that was 
subsequently seen by many as solely responsible for the collapse. 

As earlier in California, the Peruvian reduction fishery was seriously contested by those who felt that 
Peruvian anchoveta should somehow be processed for human food, e.g., in the form of fish protein 
concentrate (FPC) that could be used to fortify flours, an obvious product in a country with an animal 
protein deficiency in its highlands. Moreover, not only juvenile South American pilchard (Sardinops 
sagax) and Horse mackerel (Trachurus murphyi), which frequently occur in anchoveta schools (Bakun 
and Cury, 1999), were caught by the anchoveta reduction fishery, but also pure schools of full-sized S. 
sagax sardine and T. murphyi, adding to the controversy. Landing S. sagax for reduction has long been 
prohibited in Peru, and recently, regulations were announced which also limit the catch of T. murphyi to 
vessels fishing the stocks for human consumption, and not fishmeal (Fishing Information and Service, 
2004). 

This, however, is not the main research area for scientists working on the small pelagic fishes which 
support the most important reduction fisheries. Rather, it is their extraordinary responsiveness to 
environmental fluctuations, and their apparent resilience to fishing, notwithstanding collapses in South 
America, California, Southern Africa, and Europe. This research has yielded some powerful 
generalizations (Bakun, 1996), but still does not allow for prescription on how to ensure ‘sustainable’ catch 
levels in the face of environmental variability, growing industry demand and climate change.  

In the following, we briefly review various aspects of the fisheries for ‘forage’ fish, based on geo-referenced 
catches, from 1950 to the present, and analyze some features of these catches and of the fleets that made 
them.  

FORAGE FISH 

Forage fish is a term used to describe schooling fish that are often the prey for larger fish, seabirds and 
marine mammals. These larger animals often ’forage’ on smaller fish because they are found in large 
schools and are easy to capture. Small pelagic fish (< 30 cm in length) such as Peruvian anchoveta make 
up the bulk of forage fish, but some medium-sized fish (30-90 cm in length) such as mackerels are also 
considered forage fish. Many populations of forage fish, especially small pelagics, fluctuate in response to 
changing oceanographic conditions, which affect their planktonic food (Cury et al., 2000). Other factors 
such as predation levels, current patterns for larval retention, food availability and water conditions such 
as temperature affect the annual abundance of these fish (Fréon et al., 2005). 

The schooling behaviour of forage fish allows them to be easily caught so that the fishing fleets do not 
require as much fuel as, for example, trawlers (Tyedmyers et al., 2005; see also Chapter 2). This translates 
to lower operating costs and hence cheaper fish. Forage fish that are not consumed directly by humans are 
extremely inexpensive compared to other fish to the extent that they can be reduced to fishmeal and fish 
oil and still be price-competitive with soymeal. Some of these small and medium pelagic fish are also 
consumed by humans (Chapter 2), and caught using the same gear, often on the same fishing grounds. 

GEO-REFERENCED CATCHES  

Reported catch data from FAO, ICES, NAFO and other regional/national sources were allocated to a global 
system of 30-minute spatial cells using a rule-based approach that utilized databases of fish distributions 
and fishing access agreements as filters (Watson et al., 2004b; see also www.seaaroundus.org). Emphasis 
was given to small pelagic fishes, and other species used in reduction fisheries, i.e., forage fish as defined 
in this report (Table 1). Also, the fuel consumed by the various gears used to catch forage fishes was 
estimated, based on the approach and data in Tyedmers et al. (2005). 
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RESULTS 

Landing trends 

Although forage fish have been used for industrial purposes for the last two centuries, it was not until after 
World War II that these fisheries became highly industrialized with landings of fish destined for reduction 
being a significant proportion of the fish landed globally (Figure 1). In 1948 only 7.7% of total landings was 
reduced to fishmeal and fish oil (Macer, 1974). In 2002, 29.2 million t or 36% of all marine fish landings 
were used for non-food purposes. Ninety percent of these landings (non-food), much of it consisting of 
forage fish, is  reduced, with the remaining 10% used directly for feed in aquaculture and fur animals 
(FAO, 2005; Figure 1). The by-products of processing fish for human consumption are also destined for 
fishmeal and fish oil, but make up a small, albeit increasing, proportion of catches and are not included in 
this analysis (Kelleher, 2005). 

 
Figure 1. Trend in landings destined for reduction as proportion of total global landings 1950 to 2001. Data from 
1950 to 1970 based on Macer (1974); 1971 to 1975 based on Grainger and Garcia (1996); data after 1975: Sea Around 
Us Project (2006). 

Landings destined for reduction increased very slowly until 1958, when large industrial-scale fishing for 
Peruvian anchoveta (Engraulis ringens) began (Figure 2). This fishery is now the world’s largest with 
recent landings of 2.5 million t in 2001, all of it destined for reduction. As indicated above, landings of fish 
destined for reduction are highly variable, as seen in total global landings of fish destined for reduction 
(Figure 2) and landings of forage fish by region (Figure 3). Declines in landings in the 1970s, 1980s and 
1990s are due to the impact of the El Niño in those years. 

The global pattern of fish catches destined for reduction has remained roughly similar since the 1970s 
(Figure 4). If anything, the role of the forage fish fisheries for economic well being and food security along 
the coasts of Chile and Peru has increased since the 1970s.  

The bulk of the fish caught for reduction are caught in South America (Peru and Chile), Northern Europe 
(Denmark, Iceland and Norway) and on the east coast of the United States. In the early 1960s and 1970s, 
Japan and the USSR had sizeable fleets including factory ships fishing for fish for reduction. However, 
with the establishment of EEZs and consequent closing of fishing areas to these nations, they have scaled 
back their fishing operations, including processing plants. 
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Figure 2. Trend in global landings for fish destined for reduction 1950 to 2001. Data prior to 1976 based on FAO total 
estimates (see Grainger and Garcia 1996), data from 1976 onwards based on Sea Around Us Project (2006) taxon- and 
country-based associations with fishmeal types reported in FAO production figures. 

South America, in particular Peru and Chile, experienced considerable growth in landings from the late 
1950s and peaked in the early 1990s; although catches are highly variable, they now fluctuate at around 20 
million t annually (Figure 3). The fisheries in Northern Europe and on the east coast of the United States 
were established much earlier than those in South America. The landings in these two areas are less 
variable with much lower landings (Figure 3).  

 
Figure 3. Trends in landings for fish destined for reduction 1960 to 2001, by major region. Region-specific 
information not available between 1970 and 1976 (Grainger and Garcia, 1996; Sea Around Us Project, 2006)  
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Figure 4. Catch rates for species associated with reported species destined for reduction for the 1970s and 2000s 
based on spatial cell-based global fisheries data (Watson et al., 2004b) and a taxon- and country-based association 
with fishmeal types reported in FAO statistics. 
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Composition of landings  

While herring, sardines and menhaden were the main species targeted early in the 20th century, the range 
of species targeted has expanded since then (Table 1). In the 1950s, the bulk of fishmeal produced 
originated from landings of fish from Northern Europe (e.g., herring), Japan (e.g., Pacific herring), 
Southwest Africa (e.g., Pilchard) and the United States (e.g., Menhaden). The development of the 
anchoveta fisheries off Peru and Chile soon overshadowed these countries with volumes of landings far 
exceeding that of the other countries. 

Table 1: Species that made up 75% of the fishmeal produced globally in 1950, 1976 and 
2001, starred species were present in only that year. Data from 1950 based on Grainger and 
Garcia (1996); other data: Sea Around Us database (2006). 

1950 1976 2001 
Atlantic herring Peruvian anchoveta Peruvian anchoveta 
Atlantic menhaden* Capelin Inca scad* 
Japanese pilchard* South American pilchard Capelin 
Gulf menhaden Chub mackerel Blue whiting 
Chub mackerel Atlantic herring Japanese anchovy* 
European sprat European pilchard* Chub mackerel 
Capelin European sprat South American pilchard 
Blue whiting Norway pout* Atlantic herring 
Pacific menhaden* Atlantic mackerel Threadfin breams* 
Peruvian anchoveta Gulf menhaden Sandlances 
Chilean jack mackerel Sandlances Gulf menhaden 

 
The expansion of the reduction industry in South America from the late 1950s saw a dramatic change in 
the species composition of fishmeal globally (Table 1). In 1950 landings of anchoveta made up a very small 
proportion of the global production of fishmeal. However, by the late 1960s, it was the major species for 
fishmeal (Figure 5). It was estimated that, in 2003, Peruvian anchoveta landings made up 57% of global 
landings used for fishmeal production (IFFO, 2004). While Peruvian anchoveta was the major species 
used in Peru, Chile uses additional species such as Hake (Merluccius gayi) and Horse mackerel 
(Trachurus murphyi). In the past, Pilchard (Sardinops sagax) was also used. The estimated use of 
pilchards increased steadily until the early 1980s and then declined (Figure 6) while the estimated use of 
hake has fluctuated markedly throughout the 1990s (Figure 7). 
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a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5a, b and c. Trends in the composition of fishmeal based on the top species destined for reduction that made 
up at least 75% of the fish used by volume for reduction in 1976 and 2001; 5a is top 5, 5b is middle five, 5c is bottom 5 
(Sea Around Us Project, 2006). 
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Figure 6. Landings of South American Pilchard destined for reduction 1950 to 2001. (Sea Around Us Project, 2006).  

 
Figure 7. Chilean landings of Hake destined for reduction between 1976 and 2001. (Sea Around Us Project, 2006). 

In Northern Europe, landings of Atlantic herring and Capelin have historically been used for fishmeal, and 
Capelin continues to be a major reduction fishery, making up 10% of fish landings used for fishmeal 
globally. Northern Europe has used a variety of species for fishmeal including the European sprat, Norway 
pout and Haddock (Macer, 1974). European sprat declined as a major component of fishmeal from the 
1960s with current landings accounting for a small proportion of total fishmeal production (Figure 8). 
Norway pout followed a similar pattern. It was not used in fishmeal production until the early 1960s; 
landings peaked in the mid-1970s and then declined steadily, with current catches of this species 
estimated to be less than 100,000 t (Figure 9). Initially, Blue whiting was caught as bycatch from 
industrial fishing and used as fishmeal but as species of fish traditionally used for fishmeal were reduced a 
fishery targeting this species developed as early as the late 1960s (Macer, 1974). This species is now a 
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major component of fishmeal globally and is especially important in Northern Europe where it makes up 
2% (in 1975) to 35% (in 2001) of fish destined for reduction (Figure 9). While declines in the abundance of 
some target species can account for the change in composition of fishmeal in Europe historically the 
composition of herring in fishmeal has changed due to European policy. A recent EU directive prohibits 
the use of Atlantic herring being used for fishmeal and therefore may account for some of the decline in 
the use of these species (Huss et al., 2003). However, the restriction does not apply to Norway and 
Iceland, two of the largest producers of fishmeal in Northern Europe.  

In the United States, Menhaden has been used since the early 1900s for reduction and continues to be the 
major fishery for reduction in the United States; its catches are relatively constant (Figure 10).  Japan has 
an even longer history of fishmeal production based on Pacific saury, Pacific herring and sardines. When 
the stocks of these fishes declined, Japan extended its fishing efforts further offshore using a distant water 
fleet and factory ships, especially for processing the by-products of the Alaska pollock fishery (Macer, 
1974). Japan’s landings of fish destined for reduction declined as did the volume of fishmeal and fish oil as 
countries established their EEZs and restricted access to their fish resources including fish used for 
reduction. In Southwest Africa, landings used for reduction have declined since the 1960s after peaking in 
the 1960s, with catches now fluctuating around 850,000 t annually (Figure 11).  

 
Figure 8. Northern European landings of European sprat from 1950 to 2001. Data from 1950 to 1992 from Grainger 
and Garcia (1996); after 1975, data are from the Sea Around Us Project (2006). The FAO estimates were derived from 
expert opinion, i.e., from the International Fishmeal and Fishoil Organisation (R.J.R. Grainger, FAO, pers. comm.). 
Sea Around Us Project data were derived as described in methods section. 
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Figure 9. Northern European landings of Norway pout and Blue whiting destined for reduction from 1950 to 2001. 
Data from 1950 to 1975 are from Grainger and Garcia (1996); after 1975, data are from the Sea Around Us Project 
(2006). 

 
Figure 10. United States landings of menhaden from 1950 to 2001. Data from 1950 to 1975 are from Grainger and 
Grainger (1996); after 1975, data are from the Sea Around Us Project (2006). 
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Figure 11. Trends in landings of fish destined for reduction in Southern Africa (Macer, 1974; Payne and Crawford, 
1989 and Sea Around Us Project, 2006).  

Globally, the species composition of fishmeal and fish oil is highly variable from year to year because the 
fisheries that are used as inputs into this sector are highly sensitive to oceanographic changes (Figure 4). 
For example, in strong El Niño years anchovy abundance declines, while sardine abundance increases 
(Bakun and Broad, 2003); this is also reflected in the catch and ultimately in fishmeal composition from 
Chile and Peru. The variability in the composition also affects the quality; fishmeal and fish oil high in 
Peruvian anchoveta are considered superior to fishmeal and fish oil with significant sardinella inputs since 
the fat content is different. Figure 4 illustrates the variability of landings of the majority of species that are 
used in the production of fishmeal. In 1976 the top five species (Peruvian anchoveta, Capelin, South 
American pilchard, Chub mackerel and Atlantic herring) accounted for 57% of the fish used for reduction, 
the same suite of species accounted for 47% of fish used in 2001. 

The status of most species used for reduction is fully exploited or over-exploited, and in a few cases 
declining, indicating that overall there is little scope to increase landings of these species (Table 2). 
Technological advances have reduced the conversion ratio of live fish to fishmeal from 5 to 4, enabling 
production of fishmeal to increase slightly. However, fisheries based on other species will need to be 
developed if total fishmeal production is to increase from its current level.  
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Table 2. Stock status for fish destined for reduction in 2002 (based on FAO, 2005). Multiple values of 
exploitation are due to multiple stocks with the FAO area being in different states of exploitation. 

Target Stock FAO Area 
State of exploitation in 

2002 (FAO 2005)* 
Atlantic menhaden NW Atlantic (21) F 

 WC Atlantic (31) F 
Gulf menhaden WC Atlantic (31) F 
Atlantic mackerel NE Atlantic (27) F 
Blue whiting NE Atlantic (27) O 
Norway pout NE Atlantic (27) F 
Sandeels/Sandlances NE Atlantic (27) F 
Atlantic herring NW Atlantic (21) U-F-R 
 NE Atlantic (27) F 
European sprat NE Atlantic (27) F 
 Mediterranean & Black Sea (37) D 
Capelin NE Atlantic (27) F 
Chub mackerel EC Atlantic (34) F 
South African anchovy SE Atlantic (47) F 
Horse mackerel SE Atlantic (47) M/F 
Pilchard SE Atlantic (47) F 
Pacific herring NW Pacific (61) ? 
Pacific saury NW Pacific (61) F 
Japanese sardine (anchovy) NW Pacific (61) F 
Peruvian anchoveta SE Pacific (87) R-O 
South American pilchard SE Pacific (87) F-O 
Chilean jack mackerel SE Pacific (87) F-O 
Hake SE Pacific (87) F-O-D 

*F=fully exploited; O=overexploited; U=underexploited; R=recovering; M= moderately exploited (FAO, 2005) 
 

Trophic level trends 

The mean trophic level was calculated as described in Pauly and Watson (2005) for fish used for reduction 
from 1976 to 2001. Globally, the trophic level of fish destined for reduction has increased since the mid 

1980s (Figure 12). Increasing average 
trophic levels has occurred in most areas of 
the world, the exception being Africa, 
where the average trophic level has 
remained relatively stable (Figure 13).  The 
biggest increases have been in Europe 
where the trophic level increased from 3.17 
to 3.4, and in Asia where the trophic level 
increased from 3.11 to 3.77. In North 
America and South America, the average 
trophic level has increased by 0.26 
between 1986 and 2001.  

 

 

 

Figure 12. Trend in weighted mean trophic level of fish 
destined for reduction from 1976 to 2001 (Sea Around Us 
Project, 2006). 
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Figure 13. Trend in weighted mean trophic level of fish destined for reduction in the major continents from 1976 to 
2001 (Sea Around Us Project, 2006). 

Fuel consumption 

Using global fuel intensities available for all reported catch (Tyedmers et al., 2005) it was possible to 
associate the landings of all forage fish with the fuel used to catch them. In Figure 14, we can see that a 
maximum of 10 billion litres of fuel was used in some years for the reported forage fish catch, which was 

nearly a fifth of all fuel expended in 
global fisheries. Forage fisheries use 
approximately 40% less fuel than the 
average fishery. Of all species used for 
reduction, more was expended on 
Atlantic horse mackerel then any other. 
This was followed closely by Chub 
mackerel, Japanese anchovy, South 
American pilchard, and Threadfin 
breams (Nemipterus spp.). There were 
many other species (‘other’) which, 
combined, accounted for more than two-
thirds of fuel expended in forage 
fisheries.  Because the value of fish used 
primarily for reduction is low compared 
to other species used as seafood, it is 
necessary to catch large quantities for 
the same amount of fuel as expended in 
other fisheries. 

 

 

Figure 14. Fuel used to catch reported reduction fishery landings (Sea 
Around Us Project, 2006). 
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Fishing gear used 

A database associating all global catch and the gear used to take it (Watson et al., 2004a, Watson et al., 
2006) based on the gear descriptions of von Brandt (1984) was used to break down the landings of forage 
fish (Figure 15). This revealed that most were taken by seine net; however, this has declined as there is an 
increasing use of trawls to catch forage fishes.  Other types of gears are not globally important (Figure 15).  

 
Figure 15. Gears used globally to catch forage fish. The dominance of seine nets is evident (Sea Around Us Project, 
2006). 

Prices 

The Sea Around Us Project prices database (Sumaila et al. [in press], and www.seaaroundus.org) was used 
to estimate the average ex-vessel price of fish destined for reduction. Similarly, the UN Conference on 
Trade and Development (UN, 2006) database was used for fishmeal. Only prices that were observed or 
derived directly from observed ex-vessel prices were used (Table 3). A weighted average price was used 
since anchoveta dominates the species composition of fishmeal and has one of the lowest ex-vessel prices. 
The weighted prices are based on nine taxa that make up at least 60% of the landings used in fishmeal for 
the period 1976 to 2003. Both weighted nominal and real prices (adjusted to 2000) were calculated, and 
the nominal ex-vessel price compared to the nominal price of fishmeal (Figure 16 a and b). 

Table 3. Countries and taxa used to estimate weighted ex-vessel prices for fish used for reduction. 

Taxon Countries 

Atlantic herring Denmark Germany Iceland Ireland USA 
Blue whiting Denmark Iceland Ireland Norway UK 
Capelin Canada Denmark Iceland Norway �  
European sprat Denmark Germany Norway UK �  
Sandlances Denmark Norway UK �  �  
South American pilchard Chile Mexico USA �  �  
Chub mackerel Chile USA �  �  �  
Peruvian anchoveta Chile ��  �  �  �  
Gulf menhaden USA ��  ��  ��  ��  

 



Fisheries for forage fish, 1950 to the present, R. Watson, J. Alder and D. Pauly 

 

15 

Since 1976, the nominal price of fishmeal has increased while the average nominal ex-vessel price has 
remained relatively constant (Figure 12). However, when real prices (adjusted to 2000) are used, the real 
price of fishmeal actually declines and the real ex-vessel price declines, albeit very slowly. The combined 
uncertainties associated with ex-vessel prices, of tonnage used and the Hamburg market prices (see Figure 
16b) make the global value of fishmeal and the ex-vessel value of fish difficult to estimate reliably, and we 
abstain from presenting such a figure here. 

a) 

 

b) 

 
Figure 16a and b. Trends in weighted ex-vessel prices (nominal and real 2000) for fish used in reduction and prices 
for fishmeal sold at the Hamburg market (United Nations, 2006) 
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DISCUSSION 

Landings of fish destined for reduction have increased since the 1950s and appear to have stabilized 
around 25 million t live weight. However, the species targeted for reduction have changed and, in most 
areas of the world, fish at higher trophic levels are being used. While some argue that most fish landed for 
reduction are not consumed by humans, the evidence is otherwise (Chapter 2). 

The fluctuation in global landings and landings of particular species for reduction often raises the question 
of the impact of these catches on stocks and the ecosystem. Bakun and Broad (2003) noted that small 
pelagic fish, which make up much of the bulk of forage fish, are extremely important to the transfer of 
production ‘upward’ in the food webs of the ecosystems they are found in. They operate at the crucial 
‘wasp-waist’ trophic level where one or more small plankton-consuming nektonic species tend to dominate 
the trophic transfers, whereas there are relatively more species involved in transfers at lower and higher 
trophic levels (Bakun and Broad, 2003). 

For fisheries where assessments are available, the status of many of these fish stocks have been assessed as 
‘sustainable’ and fished ‘within safe biological limits’ by various organizations (IFFO, 2004; Seafeeds, 
2003). However, an analysis of the exploitation status of the major species used for reduction indicates 
that not all stocks are within safe limits (Table 2). Some stocks such as North Sea herring were used for 
reduction until 1997, when the stock collapsed and the EU banned the use of herring for reduction. Some 
herring that is caught as bycatch can be used for reduction (EU, 2004). The status of forage fish stocks are 
often reported on large geographic areas and are usually amalgamations of more than one stock within an 
FAO area, so the status of individual stocks in an FAO area can be masked if one or two stocks overwhelm 
the overall assessment. 

Most fisheries are under some form of management and, given the variable nature of these fisheries and 
their sensitivity to changing oceanographic conditions, a precautionary approach to management 
including setting of quotas and effort limits is needed. In Europe, the quota for capelin was recently 
reduced from 700,000 t in 2005 to 200,000 t in 2006 (Carvajal, 2006). A notable exception is Blue 
whiting, one of the major inputs to fishmeal and fish oil in Europe.  The stocks in the North Atlantic are 
exploited by a number of countries within and outside of the EU, which cannot agree on quotas for the 
fishery. In 2004 landings totalled over 2 million t, despite a recommended quota of less than a million t by 
ICES (EU, 2004). There is considerable concern over the long-term viability of this fishery, as there is for 
other forage fish fisheries such as Horse mackerel, European sprat, North Sea herring and other species 
throughout the world. 

The impact of landing 40% to 60% of the Sandeel biomass consumed by many demersal fish in the North 
Sea and of landing 15% to 20% of the total biomass is poorly understood for this and other species (ICES, 
2003). A study of the impact of reduction fisheries on EU marine systems was completed in 2003. The 
general conclusion was that “the impact of industrial fisheries we were able to identify is relatively 
limited compared to the effects of fisheries for species destined for human consumption” (Anon., 2004). 
ICES also looked at the particular questions of the impact of the fisheries on predators and bycatch. 
Information on predator interactions was limited to the North Sea and they concluded that the overall 
impact of industrial fisheries was relatively limited; however, interactions can be locally significant with 
certain populations of predators. Again, data were available from the North Sea to investigate only the 
impact of incidental bycatch and the conclusions were that most incidental catches are also species used 
for fishmeal (e.g., Blue whiting is a bycatch of the Norway pout fishery). Also, where edible species are 
caught incidentally, they generally make up a low proportion of the catch, which is considered acceptable 
by the EU (EU, 2004). 

Forage fish are important prey for marine mammals and seabirds as seen in El Niño years in South 
America, where there are significant mortalities of these animals due to a reduction in prey abundance 
(Hays, 1986). Changes in the Benguela upwelling system also result in substantial mortalities of marine 
mammals and seabirds (Crawford et al., 1992). The additional impact of commercial fishing of prey 
species on marine mammals and seabirds in El Niño years has yet to be assessed. In the US, there is 
growing concern over the landings of Menhaden impacting the catch of Striped bass in Chesapeake Bay 
(Uphoff, 2003). Similarly, concern in the UK over the interaction of Sandeels and seabirds resulted in the 
European Union Council of Fisheries Ministers banning catches of Sandeel in the North Sea, in an area of 
20,000 km² bordering the east coast of Scotland and Northumberland (EU, 2004). 
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The weighted average nominal price of fish destined for reduction has increased from an estimated US$ 77 
/t to $US 92 /t, an increase of 19% between 1976 and 2003, while the average Hamburg price for fishmeal 
has increased from $US 376 /t to $US 611 /t, an increase of 63% over the same time period. The weighted 
price of fish destined for fishmeal and fish oil has declined from $US 155 /t to $US 91 /t, a decline of 42% 
between 1976 and 2003, while the real Hamburg price of fishmeal declined from $US 1343 /t to $US 604 
/t, a change of 55% over the same period. The price of fishmeal and in turn the ex-vessel price of fish 
destined for reduction is driven by: 

• Supply of fish: when catches increase in South America, prices decline; 

• Demand from Asia, which accounts for 60% of fishmeal consumption, much of it in China; and 

• The price of soymeals, which can be used as a substitute for fishmeal in animal production (Asche 
and Bjorndal, 1999). 

In the meal market, fishmeal accounts for 5% of total supply while plant meals, especially soy, account for 
almost 95% of supply. This high percentage of plant meal therefore influences the price of fishmeal and in 
turn, the ex-vessel price of fish destined for reduction. Although fishmeal is nutritionally superior to soy 
and other plant meals in intensive animal production systems, if fishmeal prices increase, consumers will 
substitute plant meals if quality is not compromised (Asche and Bjorndal, 1999), limiting the scope of 
fishmeal producers to increase price and in turn allowing fishers to increase ex-vessel prices. In Europe, it 
was noted that ex-vessel prices for fish used for reduction were generally 10% of the cost of fish used for 
human consumption (Nielsen, 2000).  

The upward trends in the average trophic level of landings destined for reduction are in contrast to the 
downward trend in the average trophic level of fish for human consumption (Pauly and Watson, 2005). 
This indicates that fish potentially suitable for human consumption are being diverted to fishmeal (a topic 
discussed further in Chapter 3). This trend is not unexpected since the species composition of fishmeal has 
changed, including the growing use of Dorab wolf-herring in Asia, King mackerel in the United States, 
Japanese and Spanish mackerel in China and Japan, Southern hake in Chile and Blue whiting in Europe. 
Some of these species are also used for human consumption, or through processing technology directly 
consumed by humans, as is the case for Blue whiting (Chapter 2).  

The fisheries for forage fish have changed significantly since 1950, especially with the development of the 
anchoveta fishery in Chile and Peru. Initially, the demand for fishmeal and fish oil was driven by intensive 
animal production systems seeking inexpensive, yet effective components to animal feeds. Although the 
growth of aquaculture over the last 20 years has changed the landscape of use of fishmeals and oils, it has 
not dramatically changed the nature of the fisheries in South America and the USA. However, the 
increasing demand for these products has expanded the species of fish targeted for reduction, which now 
include higher trophic level species. This expansion has also at times resulted in a competition with human 
needs.  

In Europe there have been major shifts in the species exploited and in the sustainability status of some of 
those species. While the intensive animal production sector can substitute fish for soy, the aquaculture 
sector is currently limited and thus the pressure to exploit forage fisheries at their maximum will continue 
as new species become exploited with unknown impacts on marine mammals and seabirds. 
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CHAPTER 2  
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ABSTRACT 

A brief review of the human consumption of forage fishes is given, with emphasis on traditional use of 
fermented small pelagic fishes and the importance of these fish to food security. This contrasts with the 
notion, disseminated by some actors in fisheries and aquaculture, that the ‘reduction’ of such fishes to 
fishmeal and fish oil has no impact or only a positive impact on human food security. Current regional 
patterns of small pelagic consumption are reviewed, which suggest that agricultural uses of forage fish 
compete directly with human consumption in some areas of the world. This has resulted, overall, in a 
declining human consumption of relatively cheap pelagic fish and, in richer countries, in increased 
consumption of pricey seafood, some of it farmed and fed meals and oils derived from small fish, 
particularly small pelagics.  

HISTORICAL INTRODUCTION 

Many of the small, pelagic fishes described as ‘forage fish’ in other parts of this document have a long 
history as human food fishes. This is well documented; for example, over 2000 years ago, small pelagic fish 
were very popular around the Mediterranean basin (Gamer, 1987). Thus, many of the amphora recovered 
from sunken Roman vessels did not contain wine, as is generally assumed, but garum, a fish ‘sauce’ derived 
from fermented small pelagic fishes, similar to Vietnamese noc mam, or Thai nam pla, about which more is 
found below. Garum was a mainstay of the Roman diet, and the manufacture and consumption of garum 
has survived from the Roman Empire to the present, at least in a few villages of southern Italy.  

 
In northwestern Europe, a transition from freshwater to marine fishes occurred at the end of the first 
millennium, possibly due to urban population growth and the concomitant overexploitation of freshwater 
species (Barrett et al., 2004; Pauly, 2004). The ascent of Christianity intensified the demand for fish, the 
only permitted animal protein during an interminable Lent period, and on other religious occasions. Fish 
preservation required huge quantities of salt at specific times, and salt monopolies (and the blackmail of 
fishers that they allowed) were extremely profitable, as we also know from other parts of the world (Butcher, 
1996, 2004). Such a salt monopoly was established in the high Middle Ages by an alliance of mainly German 
cities, the Hanseatic League, which derived its immense wealth – embodied in superb buildings we now can 
admire in Hamburg or Lübeck – ultimately from the Norwegian, North Sea and Baltic herring fisheries 
(Sarhage and Lundbeck, 1992). 

The Hanseatic League monopoly was followed by Dutch supremacy, whose herring fisheries, in the 17th 
century, allowed the Low Countries, for a while, to delay the emergence of Britain’s unchallenged naval 
power – all this thanks to the lowly herring. In fact, as documented by Cushing (1988), much of the 
northwestern European politics and warfare can be explained, at least partly, by their erstwhile dominance 
of fishing grounds for lucrative small pelagic fishes. This conflict over small pelagic fish was similar in other 
parts of the world, with colonial authorities deriving a sizeable part of their income from the salt 
monopolies they imposed on fishers in India (hence Ghandi’s early activism on direct access to salt) or 
Indonesia (Butcher 1996, 2004). 

                                                
2 Cite as: Alder, J., Pauly, D. 2006. Human consumption of forage fish, p. 21-32. In: Alder, J., Pauly, D. 2006 (eds.) On the multiple 
uses of forage fish: from ecosystems to markets. Fisheries Centre Research Reports 14(3). Fisheries Centre, University of British 
Columbia [ISSN 1198-6727]. 
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Indeed, it is in Southeast Asia that we currently find the tightest coupling of a strong dependence of both 
rural and urban population on small pelagic fishes and sophisticated method for their cost-effective 
preservation, i.e., fermentation (Ruddle and Ishige, 2005). This yields the highly nutritious noc mam, or 
nam pla alluded to above, along with their equivalent in other countries, for example patis in   the 
Philippines (Ruddle, 1986, Pauly, 1996).  

These products, along with their equivalents in other regions of the world, attest to the deep historical 
embeddedness of small pelagic fishes in the diet of people, and expose as convenient untruth the notion of 
some western fisheries managers and aquaculture advocates that the small fish used for ‘reduction’ to 
fishmeal and fish oil are not palatable to people.  

FORAGE FISH CONSUMED BY HUMANS 

The species of small to medium pelagic fish that are eaten vary between geographic regions and reflect 
historical and current taste preferences. While some medium pelagic fish such as mackerels are also 
consumed by humans, small pelagics such as sardines and herrings make up the bulk of fish consumed by 
humans and the focus of this chapter. Indeed some small species of fish that are only recently being 
exploited are fished both for human consumption and fishmeal (e.g. Blue whiting). 

Small pelagic fish are relatively easy to preserve (see above). Also, these fish, due to their schooling habits, 
are easy to catch using small mesh nets with low operating costs. This is especially true for the fuel cost, 
which is much lower than for other fisheries such as line and trawl (Tyedmers et al., 2005, and Chapter 1). 
Consequently, the fish are often much cheaper and more accessible than demersal fish. In countries where 
the demand for animal protein (or for cheap protein) is not met domestically, imports of small pelagics such 
as herrings, sardines and mackerel are often used to meet that demand, e.g., in Ghana, Togo or Nigeria 
(Alder and Sumaila, 2005). Similarly, in the Caribbean, Oceania and Latin America, imports of small pelagic 
fish as frozen or canned product are common (PFA, 2006). 

Table 1 shows that almost all the small fish currently dominating reduction fisheries are (or were) eaten by 
people. This applies even to the Peruvian anchoveta and associated small fishes which were consumed by 
humans, until the development of the reduction fisheries in Peru in 1953 (Chapter 1). The increased demand 
for small pelagic fish for the fishmeal plants resulted in a decline in human consumption of these fish. 

Table 1. Major forage fish species and human consumption 

Fish Human consumption Reference 
Peruvian anchoveta Primarily canned for human consumption; www.oceansalive.org 
Capelin Roe is used for human consumption; some is frozen for specific markets in 

Japan and Europe, market is increasing; 100,000 t of 633,000 t landed in 
2004/05 was sold for human consumption; 

Nortrade (2006) 

Japanese pilchard Approximately 33% of landings are destined for human consumption, primarily 
in Japan where it was consumed for centuries; 

Chapter 1 

Chilean jack mackerel Historically used for human consumption as frozen or canned product sold in 
Latin America, Africa and Oceania but recently used in fishmeal;  

Chapter 1 

South American 
pilchard 

Fresh, frozen and canned product is sold for human consumption in Latin 
America, North America and Europe; 

FIS (2006) 

Gulf and Atlantic 
menhaden 

None is consumed directly; some is sold as a food oil/emulsifier;  Huss et al. (2003) 

Sandeels A small amount is sold for human consumption; Nortrade, (2006) 
European sprat Small market for canning and smoking in Europe; ICES (2005) 
Norway pout No human consumption; Huss et al. (2003) 
Northern blue whiting Small market for human consumption due to processing problems not 

palatability; some of the landings are used in the production of surimi;  
Min of Ag, Fish and 
Food (1980); Anon. 
(2004) 

Round sardinella Frozen exports to Africa, Asia & Eastern Europe for human consumption; PFA (2005)  
Atlantic horse 

mackerel 
Historically targeted for reduction but in the 1970s some landings were used for 

human consumption and recently larger fish are targeted for consumption 
but much of it is exported to Eastern Europe and Asia; 

ICES (2005) 

Herring Historically as fresh, salted or canned product for human consumption, but until 
recently increasing trend for its use in fishmeal, recently trend reversed with 
Nortrade processing 75% of its landings for human consumption in 2004/05 
up from 32%  in 2000/01; 

Nortrade (2006) 

Chub mackerel Fresh or canned fish consumed in California and Mexico; Anon. (2000) 
Japanese anchovy Consumed as fresh and salted products; Zhang (2002) 
European anchovy Consumed as fresh, dried, smoked, canned or frozen product. Eurostat (2005) 
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In Europe, prior to World War II, herring was also destined for human consumption (see above). 
However, now at least 50% of herring landings are destined for reduction (see Chapter 3), even though the 
European Union prohibits the processing of Atlantic herring for fishmeal by its member countries (Huss et 
al., 2003). This is possible because Norway and Iceland are not part of the EU and not bound by the EU 
decision regarding herring for human consumption. 

In the following, we present an analysis of the conflicting uses of small pelagic fishes, based on a database 
described below.  

METHODS 

The tonnage of small pelagic fish that are consumed by humans was estimated based on food 
consumption, catch and landing statistics, and the imports and exports of large pelagic fish such as tunas 
and billfish. Initially, two different FAO databases were used, the FAO ‘food balance sheets’ (FAO, 2006) 
and the Fisheries Commodities Production and Trade database, which covers the years 1976-2003 (FAO, 
2003). The food balance sheet dataset provided information on the amount of ‘pelagics’ (including large 
fish such as tunas, billfish and swordfish) consumed annually by humans. To adjust consumption to only 
forage fish as described in Chapters 1 (i.e., to many of the species listed in Table 1), the net balance of large 
pelagic fish (i.e., catch + imports – exports – re-exports) was subtracted from total pelagic fish 
consumption. 

Initial attempts were made to estimate consumption this way after converting the commodities to live 
weight equivalents on a country level, then region level. However, the estimates were not reliable, even 
including several cases with negative consumption values, due to discrepancies in the databases. Thus, the 
estimates of human consumption were based on the food balance sheets described above, adjusted for 
regional estimates of large pelagic from the Sea Around Us Project landings database (Watson et al., 
2004). For this, it was assumed that most landings of tuna were eventually consumed within the regions 
where they were caught, with the exception of Oceania where a considerable portion of the catch is caught 
by distant water fleets. Here, it was assumed that 75% of the landings were exported to the other regions 
(25% to North America, Europe and Asia respectively) since each region has a significant distant water 
fleet (e.g., US, France, Japan, Korea and Taiwan) in Oceania.   

RESULTS  

Global landing trends 

Forage fish as a proportion of 
global marine landings and all 
pelagic landings fluctuated 
considerably between 1961 and 
2002 (Figure 1). However, there 
was an increase in the late 1980s, 
which appears to be reversing 
since the late 1990s. The 
percentage of forage fish catch 
that is consumed as food directly 
has fluctuated between 10 and 
20% of global landings since 1961. 
Much of the variation is a 
reflection of the environmentally 
induced variation in landings of 
small pelagic fish.  

 

 

Figure 1. Forage fish consumed by humans as a percentage of global 
landings (left axis) and as a percentage of global pelagic landings (right 
axis). (FAO, 2006; Sea Around Us Project, 2006). 
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Regional landing trends 

There is considerable variation between continents on consumption trends of forage fish consumed by 
humans as a percentage of all pelagic fish consumed as food (Figure 2). In Africa, the percentage of small 
pelagic fish that are consumed by humans has remained constant since the early 1960s, when many 
African countries became independent. In Europe, there was a decline during the same period; this lasted 
until the early 1990s, increasing since. For Asia, North and Central America, and particularly in South 
America and Oceania, the percentage of forage fish consumption has declined. In Latin America, the 
decline commenced in the mid-1970s, coinciding with a major decline in the small pelagic fisheries along 
the west coast of South America. 

a) 

 
b) 

 
Figure 2a and b. Trends in forage fish as a percentage of total pelagic consumption on a regional basis, 
adjusted for the high volume of large pelagic fish caught by distant water fleets from North America, Europe 
and Asia. (FAOSTAT, 2005; Sea Around Us Project, 2006).  
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In Oceania, the tonnage of forage fish consumed by humans is small relative to the commercial landing, 
and also in comparison to fish consumed in Asia and Africa (Figure 3). Also, Africa and Europe increased 
their share of forage fish consumption, while the consumption in Asia, North America and South America 
declined since the 1990s.  

 

Figure 3. Trends in regional forage fish consumption as a percentage of global forage fish consumption from 1961 to 
2002. (FAO, 2006; Sea Around Us Project, 2006).  

Consumption of forage fish as a proportion of small and medium pelagic landings varies across continents 
(Figures 4 and 5). Africa’s consumption of forage fish increased from 1960 to the early 1990s and now 
fluctuates around 80% of total small and medium pelagic landings in the area. In Europe and Asia, 
consumption has been increasing since the mid 1960s, while in Latin America this declined since the mid 
1970s. 

 
Figure 4. Landings of forage fish as a percentage of regional forage fish landings (adjusted for distant water fleets in 
Oceania) from 1961 to 2002. Consumption of forage fish in Oceania was combined with Asia due to the relatively small 
amounts that are consumed in the region. Values greater than 100% indicate that landings were supplemented with 
imports to meet the demand for low-value food fish. (FAO, 2006; Sea Around Us Project, 2006). 
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Figure 5. Landings of forage fish as a percentage of total small pelagic fish landings in Oceania from 1961 to 2002. 
Note that percentage can be greater than 100 due to extremely low landings of small fish and large imports of 
processed small fish, such as tinned mackerel (FAO, 2006; Sea Around Us Project, 2006).  

Per capita consumption trends 

The trend in per capita consumption of forage fish since 1961 varies with each continent (Figure 6). In 
Africa and Oceania, where these fish play an important role in food security, per capita consumption 
declined since the mid-1980s in Oceania, and late 1990s in Africa. There has been an overall decline in per 
capita consumption in South America since the late 1970s. In Asia, where these fish are also important for 
food security, per capita consumption has remained steady. In Europe, per capita consumption increased 
since the late 1980s (Figure 7), while in North and Central America, it has declined. 
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a) 

 
 
 
b) 

 
Figure 6a and b. Per capita consumption of small fish 1961 to 2002 (FAO, 2005). 
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Figure 7. Annual supply of demersal and pelagic fish in Europe since 1961 (FAOSTAT, 2005). 

DISCUSSION 

A recent study by Delgado et al. (2003) examined trends in “low value food fish”, defined as a mixture of 
unspecified marine fish, freshwater fish and pelagic marine fish. Although this definition makes direct 
comparisons with this study difficult, some of their results are worth noting. Low-value food fish as a 
proportion of total fish consumed by humans dropped from 76% in 1973 to 65% in 1997. However, if China 
is excluded (which is justified by the unreliability of their statistics; see Watson and Pauly, 2001), the 
decline is much less: 77% in 1973 to 72% in 1997. Globally low-valued food fish increased from 41% to 47% 
of food fish consumed for the same time period (Delgado et al., 2003). The study, however, noted that the 
rise in consumption was due in part to the poor in Asia (especially China) increasing their consumption of 
farmed freshwater fish (Delgado et al., 2003). These authors also concluded that net imports of low-value 
food fish to the developing world totalled 2.3 million t in 1997.  

Nevertheless, more recently, there has been a steady increase in the percentage of marine landings (total 
and as a percentage of small pelagic) that are consumed by people (Figure 1), although this differs between 
continents, both for volume and per capita consumption (Figures 2, 3, 4, 5 and 6).  

Small pelagic fish populations are highly sensitive to oceanographic variability (Bakun, 1996) and, 
therefore, landings can vary significantly from one year to the next. However, this has limited impact on 
worldwide consumption patterns, except when the events are extreme, as in the case of the El Niño events 
of 1972-1973, 1983, and in the 1990s.  

Indeed, Figure 2 in Chapter 1 shows the decline of small pelagic landings in Peru in the early 1970s. As a 
consequence of a strong El Niño, consumption changed, but not in proportion to the decline (Figure 1, this 
chapter). There are a number of reasons for this, beyond prices, which account for the spatial differences 
and fluctuations in human consumption of small pelagic food fish. They are: 

• Increasing wealth in some countries, resulting in a switch to higher valued fish such as cods and 
haddock, and large pelagics such as tuna and billfish; 

• Substitution of small pelagic fish when there is limited availability of demersal and large pelagic 
fish; 

• Increasing competition for small pelagic fish for fishmeal and for human consumption, driving 
the price of these pelagic fish up and making it difficult for poorer countries to purchase the fish; 
and  

• Soybean price fluctuations, due to soymeal being used as a substitute for fishmeal in some 
industries. 
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We address in the following each of these four factors.  

Increasing wealth: It has been noted that for countries such as China, where incomes are rising in 
major urban areas, there has been an increase in the demand for higher valued fish, including demersal 
species such as ‘red fish’ as well as for the larger, higher valued tunas and swordfish (FAO, 2005). The 
increased consumption of large pelagic fish in China may in part account for the decline in the Chinese 
share of small pelagic fish consumption in Asia, especially since China has recently expanded its distant 
water fleet with tuna as one of its target species (Pang and Pauly, 2001). A recent study of fish supply and 
demand to 2020 noted that developing countries still have great latitude for increasing demand for low-
value food fish, but suggested that ‘upgrading’ is occurring in the wealthier segments of the developing 
world. Some of this will be realized via high valued farmed fish, further fuelling the demand for fish for 
feed/reduction to fishmeal (Delgado et al., 2003). 

In North America, consumption of low-value food fish is low compared to Asia and Africa (Figures 1, 3 and 
5).  Increasing wealth among North Americans may account for declining consumption of these low value 
food fish. Paradoxically, the increasing awareness of the health benefits of eating fish has not increased the 
consumption of healthy small pelagics, but of high-end products, notably farmed salmon, which are fed 
fishmeal and oil derived from small pelagics. As a result, overall seafood consumption rates in North 
America have shown a slight increase since the mid-1980s (Delgado et al., 2003).  

Substitution: Replacement of small pelagic fish for high-valued demersal fish such as cod and haddock 
occurs in Europe, where consumption of small pelagic fish declined from 1961 to the late 1980s, with a 
subsequent increase since then (Figures 1, 3, 4, 5, and 6). This may be explained by the supply of higher-
valued demersal fish declining, and small pelagics meeting the overall increasing demand for fish (Figure 
7). The expansion of fish species such as salmon, once considered high-value, has resulted in a lowering of 
market prices, thus enabling consumers to substitute affordably priced farmed salmon for cheap, small 
fish (Asche and Tveterås, 2005).  

Increasing competition and price: Asche and Bjorndal (1999) suggested that demand for food fish 
is price-elastic, and that real price rises will cut into fish consumption on average in developing countries. 
Also, they suggest that the cut into consumption would be stronger for lower-income groups. Delgado et 
al. (2003), in their modeling of fish supply and demand to 2020, noted that a cross-price elasticity of 0.3 
implies a 1% rise in poultry prices. This, other things being equal, implies a 0.3 % rise in fish demand. This 
appears to hold for small pelagic food fish especially in Oceania, Asia, Africa and South America.  

In Asia, more than 50% of small pelagic low-value food fish landed are consumed, but the percentage of 
these fish that are consumed has declined recently (Figures 1 and 3). While the amount of fish consumed is 
high, on a per capita basis, it is less than for many other areas such as Oceania and Africa (Figure 6). The 
overall trend is a decline in the consumption of these fish (Figures 1 and 3), despite an overall increasing 
consumption of the percentage of landings (Figure 4) and a constant per capita consumption rate (Figure 
6). Some of this decline in consumption may be due to a shift to higher value species, as a result of 
increasing wealth in some segments of the population, as discussed above. Some of this decline may also 
be due to diverting some fish such as bycatch and fish suitable for human consumption to the aquaculture 
sector (Kelleher, 2005). 

The impact of changes in demand for small pelagic fish for reduction or human consumption is well-
illustrated by Africa. There, incomes have not increased, and small pelagic fish are an important food 
source, highly sensitive to price changes. The consumption of small pelagic fish as a percentage of the total 
pelagics landed in Africa has fluctuated little since the 1990s (Figure 1), but is increasing as a percentage of 
the global human consumption of small pelagic fish (Figure 3). More recently, Africa has increased its 
global share of these low-value food fish from less than 10% in 1961 to almost 20% in 2000. The 
percentage of small pelagics landings in Africa that are consumed increased from 1961 (25%) to the early 
1980s, then declined until the late 1980s. It now fluctuates around 80% of total African landings. 
However, the overall trend in per capita consumption of small pelagics, while fluctuating, is positive over 
time (Figure 6). These fluctuations in consumption are, in part, a reflection of changes in price and supply 
on the world market, with the increases or decreases of the landings of Peru and Chile having the strongest 
impact on world supplies and prices.  
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In South America, consumption of small pelagic food fish as a percentage of total pelagic landings 
increased rapidly until the early 1970s, coinciding with the increased landings of small pelagic fish in the 
region (Figures 1 and 4). It then declined significantly in the 1970s, in the aftermath of the first collapse of 
the anchoveta fishery. Since then, consumption has fluctuated with an overall declining trend. Similarly, 
since the late 1970s, there has been an overall decline in South America’s consumption of global landings 
of small pelagic food fish (Figure 3). Per capita consumption of these low-value food fish in South America 
follows the same increasing trend until the 1970s and early 1980s, with a subsequent decline, accelerating 
in the last five years (Figure 6).  

In South America, especially Chile, salmon aquaculture is expanding. As a result, and given that catches of 
small pelagics and hence fishmeal/oil production in Chile and Peru have not increased, exports from the 
region have remained roughly constant, while ‘internal’ consumption increased (in the aquaculture 
sector). Concern was raised in the region over food security issues since many of the species, such as 
mackerels, used for fishmeal are also consumed by local residents (Table 1). In Peru, the government has 
restricted industrial fisheries (most of it destined for fishmeal) from fishing for some small pelagic species 
and in certain areas to ensure there is an affordable supply of fish for human consumption (FIS, 2003). 

Historically, the supply and demand of small fish for human consumption was a simple model of fishers 
catching the fish, processing and preserving the products and selling the fish to local consumers or buyers 
for export to other countries. However, with the expansion of reduction plants in the 1960s, this model 
became more complex, with fish destined for human consumption competing with several other 
consumers of fishmeal and fish oil, such as intensive animal producers, especially for pigs and poultry, 
aquaculture producers, especially for fish oil, the pharmaceutical industry and, more recently, the pet food 
industry. There is general agreement that there is no scope for increasing the exploitation rates of these 
small pelagic stocks. Rather, there are limits to the potential expansion of intensive animal production, 
including aquaculture, which compete with human consumption.  

Soymeal can be used as a substitute for fishmeal in intensive animal production, especially in the pig and 
poultry sectors (Chapter 4). Indeed, in 1996/97, fishmeal accounted for 4% of the world’s protein meals 
supply, while soymeal accounted for 53% (Asche and Tveterås, 2005). Soymeal can also substitute for 
fishmeal in aquaculture, although the fish cultured do not achieve the same high growth rates (Durand, 
1998). Fishmeal is also a small part of a large protein meal market and a close substitute for soymeal. 
Therefore, it is the total supply and demand for protein meals that determine price (Asche and Tveterås, 
2005). If the total demand for protein meals increases, the price for protein meals will increase, including 
the price of fishmeal. This will also increase the likelihood of small pelagic fish destined for human 
consumption being diverted to the reduction sector. This was the case in Peru in 2003, as described 
previously. 

CONCLUSION 

Forage fish have been and still are consumed by humans as part of a larger suite of fish that were 
historically consumed, and humans are finding new ways to process and make palatable small fish that 
were previously shunned or undiscovered by consumers. There are some areas in the world where 
consumption of these fish is increasing, especially in the developing world, where traditional stocks are 
depleted as well as other sources of protein being too expensive or difficult to buy. In other areas of the 
world, especially in developed countries, consumption is declining as consumers substitute these fish for 
more affordable farmed fish. This is only possible because the small pelagics that are used as feed are 
extremely cheap on the world market. Changes in consumption patterns vary, but the underlying main 
driver of change in the last 20 years or more has been the price of forage fish, which risks the food security 
of people relying on cheap fish protein. The future of balancing food security and the development of an 
aquaculture sector relies on a number of factors, all controlled by global events such as the price of soy 
beans, technological developments in the aquafeed industry, climate change and world oil prices.  
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ABSTRACT 

This contribution presents estimates of the amounts and distributions of small pelagic fishes (i.e., ‘forage 
fish’) consumed by the 115 species of marine mammals and the 351 species of seabirds known to feed in 
the world’s marine waters. The methods used for mapping the distribution of these predators and of their 
prey, detailed elsewhere, are briefly recalled. Marine mammals, in the 1990s, annually consumed about 
20.2 million t of small pelagics, or roughly 12 % of their food consumption; for seabirds, the corresponding 
figures, also applying to the 1990s, are 12.1 million t of small pelagics and 12.5 % of their food 
consumption.  Overall, we find that marine mammals and seabirds do not compromise human 
exploitation of small pelagics. On the other hand, reduced biomasses of small pelagics are a challenge for 
numerous species of marine mammals and seabirds.  

INTRODUCTION 

The marine mammals of the world, belonging to 115 species, jointly consume a large amount of food, about 
four times as much as humans catch (above 100 million t if illegal and misreported catches are included), 
while the 351 species of seabirds consume about as much as we catch (Kaschner and Pauly, 2005; Brooke, 
2004; Karpouzi, 2005).  

This study is devoted to investigating how much of this consumption (which, due to the nature of our data, 
represents an average year of the 1990s) consist(ed) of small pelagic fishes (i.e. ‘forage fish’), and thus to 
what extent humans may compete with marine mammals and seabirds for small pelagic fishes.  

METHODS 

Marine mammals 

 Our model encompassed 115 species of marine mammals that live predominantly in the marine 
environment (Kaschner, 2004), but did not include sirenians, sea otters, the polar bear nor any of the 
exclusively freshwater cetacean or pinniped species. We used a relatively simple generic model (Trites et 
al., 1997) to generate estimates of forage fish consumption of marine mammal species:  

(1) ∑=
s

si,si,si,i RWN*365Q                

where the annual food consumption Q of forage fish of species i was estimated from the pelagic prey 
consumed daily by each individual of species i and sex s is calculated based on the number of individuals N 
of the sex s of a species i, and a weight- and sex-specific daily ration R. 

                                                 
3 Cite as: Kaschner, K., Karpouzi, V., Watson, R., Pauly, D. 2006. Forage fish consumption by marine mammals and seabirds, p. 33-
46. In: Alder, J., Pauly, D., (eds). On the multiple uses of forage fish: from ecosystems to markets. Fisheries Centre Research Reports 
14(3). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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We obtained global abundance of marine mammal species during the 1990s by extracting and combining 
available regional abundance estimates and information about associated uncertainties from more than 
1,000 published primary (e.g., Branch and Butterworth, 2001, Whitehead, 2002, Mullin and Fulling, 
2003) and secondary sources (e.g., Reijnders et al., 1993, Ridgeway and Harrison, 1999, Perrin et al., 
2002) Mean abundance estimates that were used in this study are available in Appendix 3 (Kaschner, 
2004). We assumed sex ratios were balanced for most species, except for those for which available 
published information explicitly indicated otherwise (e.g., Wickens and York, 1997) or if unequal sex ratios 
seemed highly likely based on information about closely-related species with similar life history traits. We 
used the sex-specific mean body mass estimates for each species generated by Trites and Pauly (1998), 
who estimated female and male body weights averaged across all age classes for marine mammal species, 
based on the strong relationship between more readily-available maximum length information and 
species-specific growth rates, survival and longevity. 

We calculated daily food ration of small pelagic fish consumed by each species based on the weight-
specific energy requirements and information about diet composition. Food intake of specific species was 
calculated using an empirical model developed by Innes et al. (1987) and later modified by Trites et al. 
(1997): 

(2) s,i
8.0
s.isi, pSP*W*0.1R =  

where R is the daily food intake of forage fish of an individual of sex s belonging to species i, W  is the 
mean body weight of that individual in kilograms, and pSP is the proportion of small pelagic fishes in the 
species diet as determined by Pauly et al. (1998). Annual spatially-explicit food-consumption densities 
were generated by linking food intake to global distributions of species predicted using a large-scale 
Relative Environmental Suitability (RES) model (Kaschner et al., 2006). Within a global grid of 0.5 degree 
latitude x 0.5 degree longitude cells, we then compared predicted marine mammal food-consumption 
densities with average fisheries catch densities during the 1990s as generated by the Sea Around Us 
Project (Watson et al., 2004) using a modified version of an ecological niche overlap index. This index is 
derived from or related to the ‘competition coefficients’ of the Lotka-Volterra equations by Morisita (1959; 
see also Horn, 1966) and originally only considered the qualitative overlap of resource utilization of two 
players exploiting the same resources (i.e., the similarity of marine mammal diet and fisheries catch 
composition), but ignored the absolute amounts of the resource that is being used or consumed. We 
therefore further modified this index by introducing a weighting factor to provide a measure of the 
importance of each cell for either fisheries or marine mammals based on overall quantity of catch or food 
taken by either consumer in this cell, leading to:   
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where αj,l describes the quantitative overlap between a fishery j and marine mammals l in each cell, and 
the first term expresses the qualitative similarity in diet/catch composition between marine mammals and 
fisheries sharing the resource or food type k (in this case: small pelagics) as the ratio of ‘niche proximity’ to 
‘niche breadth’ (MacArthur and Levins, 1967), with pl,k and pj,k representing the proportions of forage fish 
in the diet or catch. This term is multiplied by the product of the proportion of global food consumption of 
small pelagic prey taken by marine mammals (Q) and the total fisheries (C) within this cell. The 
continuous resource overlap values thus generated were subsequently sub-divided to create a categorical 
index ranging from low to high. 

Seabirds  

We compiled information for 351 marine bird species (belonging to four orders and 14 families) in a 
Microsoft Access database. Of these species, 334 are traditionally considered to be seabirds. The 
remaining 17 were species of sea ducks, which consist of birds that breed inland but which winter at sea 
close to shore, and prey upon small fish and invertebrates that occur along the coast. Information was 
gathered using the following databases: (a) Aquatic Sciences and Fisheries Abstracts (ASFA); (b) Web of 
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Science, Institute for Scientific Information (ISI); and (c) BioSciences Information Service (BIOSIS) of 
Biological Abstracts. These cover peer-reviewed journals and grey literature sources. The following online 
databases were also consulted: (a) Avibase – the world bird database (Anon 2006); (b) The World 
Conservation Monitoring Centre Species Database (WCMC, 2006); (c) BirdLife International 
(www.birdlife.net); (d) the National Audubon Society (www.audubon.org) Christmas Bird Count 
(http://www.audubon.org/bird/cbc/index.html); (e) the Birds of North America Online 
(http://bna.birds.cornell.edu/BNA/); and (f) Wetlands International (www.wetlands.org). 

Information required to estimate the seabirds’ daily food intake (DFI), and hence their annual food 
consumption, included: (a) body mass (m; in g) of seabird species taken from Dunning (1993) and 
Schreiber and Burger (2002); (b) Basal and Field Metabolic Rates [BMR and FMR respectively, estimated 
using order-specific allometric equations from Ellis & Gabrielsen (2002); in kJ/day]. BMR and FMR were 
used to estimate energy requirements (ER) of seabirds in the non-breeding and breeding season 
respectively; (c) A matrix of standardized diet composition and; (d) population sizes of breeding seabirds. 

Daily food intake (DFI) was estimated using a bioenergetic model created by the ICES Working Group on 
Seabird Ecology (ICES, 2000):  

(4)    
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where DFIi denotes daily food intake for each seabird species i, ERi is the energy requirements for each i, 
DCij is the fraction of food item j in the diet of each i, and EDj is the mean energy density of each prey j. EDj 
values were available either at the species or the genus level for prey items. AEi is the mean food 
assimilation efficiency for each i, and G the total number of food groups encountered in the diet of each i. 
AEi was assumed equal to 75% (Gabrielsen, 1994; ICES, 2000; Barrett et al., 2002), unless species-specific 
information was found in the literature (see Karpouzi, 2005). 

In order to estimate seabird species’ annual food consumption, DFIi was estimated separately for the 
breeding and non-breeding season, by considering ERi for the breeding season equal to FMR (ICES, 
2000), and for the non-breeding season equal to 2.5 · BMR (ICES,2000). The length of the breeding 
season was assumed equal to incubation period + time from hatching to leaving the nest or burrow + 20 
days (Cramp 1985). 

Consumption by seabirds was specified using 25 food groups. Six out of 25 food groups represented the 
forage fish groups considered here (i.e., Capelin, Mallotus villosus; Exocoetidae; Engraulidae; Clupeidae; 
Osmeridae; Sandlance, Ammodytes spp.). Food groups were compiled based on the taxonomic groups 
represented in the Sea Around Us Project database. In order to map total food consumption by seabirds, 
we used a GIS-based modeling approach and the same spatial grid of 30-min cells developed by the Sea 
Around Us Project (Watson et al., 2004; www.seaaroundus.org). Total food consumption by seabirds was 
estimated per spatial cell, based on the seabird density of each cell (see details in Karpouzi, 2005).  

RESULTS 

Spatially explicit consumption of forage fish by marine mammals  

We estimated that food intake of forage fish by all marine mammal species combined was about two- 
thirds of the amount of small pelagics taken by fisheries in the 1990s (Figure 1). While small pelagics 
represent the single most important prey type targeted by fisheries, contributing over 50 % of the total 
catch, this food type makes up – at the most – 20% of the diet of any marine mammal species group. 
Baleen whales and pinnipeds consume the bulk of small pelagics consumed by marine mammals, although 
which of the two species groups takes the majority of this prey type may vary depending on the type of 
feeding rate model used to estimate food intake. Toothed whales, in contrast, are much less dependent on 
forage fish, and this prey type makes up less than 10% of the total amount consumed by both small and 
large odontocetes (Figure 2).  
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Spatial disaggregation of fisheries catches in the 1990s showed that the vast majority of reported catches 
was taken on the continental shelves of Europe, North America, Southeast Asia and the west coast of 
South America (Figure 3). Fisheries were concentrated in relatively small areas and fishing rates can be 
extremely high, amounting to more than 1,000 t per km2 per year in some of the dark red areas shown in 
Figure 3. Highest catches occurred in areas where continental shelves are wide, such as the East China or 
North Seas, or in productive upwelling systems, such as those that can be found along the west coasts of 
South America and South Africa. However, despite the many distant water fleets and the development of 
deep-sea fisheries operating far offshore, major fishing grounds generally lay in close proximity to areas 
with high human populations along the coasts of major industrial fishing nations.  

We predicted most of the forage fish that marine mammals consume to be taken in polar waters, with 
particularly high concentrations along the continental shelves in the North Atlantic (Figure 4). Due to the 
sheer size of the distributional ranges of many of the baleen and larger toothed whale species, 
consumption densities (annual food intake per km2) are comparatively low and homogenous across large 
areas (Figure 4). Areas of highest forage fish consumption are closely linked with pinniped occurrence, 
since the generally more restricted, coastal ranges of this species group – combined with high abundances 
and a preference for small pelagic prey types – resulted in locally concentrated feeding densities. However, 
predicted maximum food consumption densities did not exceed 0.75 t per km2 per year anywhere in the 
world, i.e., maximum food intake of small pelagic prey by marine mammals is several orders of magnitude 
lower than the highest fisheries catch rates.  

Overall, the model predicted low overlap in resource exploitation between all marine mammals and 
fisheries in the 1990s (Figure 5). High overlap appeared to be restricted to small geographical regions and 
was mostly concentrated in temperate continental shelf areas of the northern hemisphere and the highly 
productive upwelling systems in the southern hemisphere. Highest overlap was predicted in areas where 
high fishing effort coincided with high densities of seals such as the North Atlantic shelves (harp, hooded, 
harbour and grey seals) or the Benguela system (South African fur seals) or along the coast of western 
South America where productive upwelling systems support a wide range of marine mammal species and 
fisheries. Although only a few pinniped species occur in the waters around Japan, high overlap in this 
region can be attributed to the large number of dolphins and some baleen whale species feeding on small 
pelagics, combined with very high fishing rates in these waters. 

 
Figure 1. Mean estimated annual consumption of small pelagics by marine mammals in comparison to fisheries 
catches in the 1990s.  
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Figure 2. Mean estimated annual proportion of small pelagics in the diet of marine mammals and in fisheries catches 
during the 1990s. 

Figure 3. Distribution of fisheries catches of small pelagics for an average year in the 1990s. Note open-ended scale of 
legend, which indicates that fisheries catch rates can reach up to 150 000 t·km-2·year-1 in some areas.  



  

 

38                               Forage fish c0nsumption by marine mammals and seabirds, K. Kaschner, V. Karpouzi, R. Watson and D. Pauly 
 

Figure 4. Distribution of estimated marine mammal food consumption rates (t·km-2·year-1) of small pelagics for an 
average year in the 1990s.  

 

Figure 5: Map of estimated overlap in resource exploitation of small pelagics by marine mammals and fisheries for an 
average year in the 1990s.  
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Spatially explicit consumption of forage fish by seabirds 

We estimated that food intake of forage fish by all seabird species combined was at least eight times lower 
than what is taken by fisheries in the 1990s (Table 1). Small pelagics comprised about 12.5% of the overall 
food consumed annually by the world’s seabirds. Alcids (puffins and murres) and larids (gulls) are 
responsible for about 75% of small pelagic fish consumption by all seabird species combined.  

Table 1. Small pelagic fish (in t) taken annually by seabirds from different FAO statistical areas.  

FAO 
Area 

Capelin Exocoetidae Engraulidae Clupeidae Osmeridae Ammodytes All 

18 31,289 - - 1,716 - 62,621 95,625 
21 207,258 - 144 22,722 86 119,055 349,265 
27 2,556,958 - 42 657,668 22 3,071,392 6,286,082 
31 3,457 - 5,282 2,439 31 5,809 17,018 
34 - - 2,241 812 - - 3,053 
37 - - 234 24,843 - - 25,077 
41 - - 20,888 17 - - 20,905 
47 - 1 7,018 5,927 - - 12,946 
48 - - - - - - - 
51 - 13,828 15,322 4,431 - - 33,582 
57 - 4,569 11,288 650 - - 16,506 
58 - - - - - - - 
61 5,854 - 43,726 34,554 2,278 172,607 259,019 
67 111,008 - 12,044 48,321 28,785 405,430 605,588 
71 - 410,265 26,193 3,252 - 2,337 442,048 
77 - 2,310,191 174,629 27,784 - 7,328 2,519,931 
81 - 40,054 809,532 207,668 - 174 1,057,427 
87 - 56,489 249,765 13,059 - - 319,312 
88 - - - - - - - 

Total 2,915,824 2,835,396 1,378,348 1,055,864 31,202 3,846,752 12,063,385 
 

We predicted that more than 52% of the forage fish that seabirds consume is extracted over the 
continental shelves of the Northeast Atlantic Ocean (Figure 6; Table 1). In this area, sandlance and capelin 
accounted for >54% of the food taken annually by seabirds. The Eastern Central Pacific Ocean (Figure 6; 
Table 1) was the second most important area, where small pelagics taken by seabirds comprised 21% of the 
overall forage fish consumption. In this area, forage fish groups in the diet of seabirds were dominated (up 
to 92%) by fish species of the family Exocoetidae. Areas of highest forage fish consumption were closely 
linked with the distribution of those seabird species that are limited to waters above continental shelves 
when foraging (Karpouzi, 2005).  

Furthermore, predicted maximum food consumption rates exceeded 10 t · km2ֿ · year¹ֿ along the 
continental shelves of the Northeast Atlantic Ocean and around islands of the Western Central Pacific 
Ocean. This figure is more than ten times larger than what marine mammals were predicted to consume. 
However, it still remains several orders of magnitude lower than the highest fisheries catch rates. 
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Figure 6. Map of predicted global small pelagic fish consumption rate by all seabirds combined for an average year in 
the 1990s. 

DISCUSSION 

Spatially explicit food consumption and overlap with fisheries  

Based on the small size of predicted ‘hotspots’ of potential conflict, in combination with highly 
concentrated fishing operations and the mobility of many species of marine mammal and seabirds, we 
suggest that it is unlikely for direct competition to represent a severe threat to species with large foraging 
ranges. In contrast, our findings support a previously proposed hypothesis that the most common type of 
harmful competitive interaction will be one in which fisheries adversely impact species with restricted 
distributional ranges (DeMaster et al., 2001; Frederiksen et al., 2004), indicating that local depletions of 
food resources through intensive fisheries may pose serious threats to species such as the Vaquita in the 
Gulf of California, South Africa’s Heaviside’s dolphins, the North Sea populations of Black-legged 
kittiwakes, and also to localized populations of other species.  

Quantitative validation of our resource overlap analysis will be difficult to achieve. However, even though 
resource overlap does not automatically imply competition and vice versa, it is reassuring that the 
‘hotspots’ of potential conflict highlighted by our approach coincide with many areas that have been the 
focal points of much previous debate about marine mammal-fisheries and seabird-fisheries interactions. 
This indicates that the models capture at least some important aspects of the processes that drive these 
interactions. Prominent hotspots for marine mammals in Figure 5 include the east coast of North America, 
where the largest annual cull worldwide is – in part – being justified based on the perception that the 
growing harp seal population impedes the recovery of the northwest Atlantic cod stocks (e.g., Yodzis, 
2001). In addition, the model identifies areas of potential conflict in the Benguela system off southwest 
Africa, where the potential impacts of the increasing population of South African fur seals on the hake 
stocks has been an issue of much debate (Wickens et al., 1992, Punt and Butterworth, 1995), or in the 
waters surrounding Japan where the perception of marine mammals as competitors appears to be 
particularly prevalent (Anon., 2001b, a). Furthermore for seabirds, the model identified several areas of 
potential conflict, for instance in the Norwegian and Barents Seas, where rapid decline in the numbers of 
Common murres has been attributed to the development of industrial fisheries, which target mainly 
Sandeel for industrial raw materials, fish oil and fishmeal (Anker-Nilssen et al., 1997). Looking at our 
maps, the skewed perception of this issue by nations in close vicinity to these hotspots of interaction 
becomes an understandable, if somewhat myopic, viewpoint when extrapolated to the global scale.  
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On the other hand, there is a growing literature on marine mammals and seabirds being starved by 
depletion of small pelagics by fishing. We shall not pursue this theme here, except for mentioning the 
Mediterranean, where the fattening of Bluefin tuna (Thunnus thynnus) has generated a huge demand for 
small pelagics. It has been proposed that this demand, which is added to that of the seafood markets of 
Mediterranean countries, has led to a radical depletion of the stocks of small pelagics in certain areas (e.g. 
the Ionian Sea) and, therefore, to a depletion of previously abundant Common dolphins (Delphinus 
delphi) (CIESM 2004; Bearzi et al., 2004,2005). 

BIASES AND LIMITATIONS OF FOOD CONSUMPTION MODELS 

All input parameters of the basic food consumption models are affected by a number of conceptual and/or 
methodological biases.  

Abundance 

Estimating abundance of any marine mammal and seabird species is challenging due to the vast 
distributional ranges of most species and, for marine mammals, the fact that they spend the majority of 
their time underwater (Buckland et al., 1993). Moreover, dedicated surveys are labour- and cost-intensive, 
are generally conducted at irregular intervals and cover only a small proportion of a species’ total range. A 
lack of standard surveying techniques and coverages, and seasonal and inter-annual variation in species 
occurrence patterns, hamper direct comparison and summation of available regional areas. For all of these 
reasons, the global estimates used here should be regarded with caution. Nevertheless, we arrive at 
abundance estimates that are largely comparable to those previously used in similar studies assessing food 
consumption of marine mammals and seabirds on very large scales (Trites et al., 1997; Young, 2000; 
Tamura, 2003; Brooke, 2004). 

Feeding rates  

The selection of feeding rates used in any food consumption model strongly affects estimates of total 
consumption. Feeding rates have been estimated based on a variety of different methods ranging from 
direct measurements of food intake or maximum stomach contents (Innes et al., 1987) to bioenergtic 
models (Lockyer, 1981b, a; Nagy et al., 1999; Winship et al., 2002). All models are based on certain 
assumptions about physiological parameters and the feeding requirements of a specific individual (e.g., 
Klumov, 1963; Innes et al., 1986) or standard metabolic rates of species (Lilliendahl and Solmundsson, 
1997; Sigurjónsson and Víkingsson, 1997). Models are thus associated with high uncertainties, particularly 
for baleen whales owing, e.g., to the difficulties associated with studying metabolic rates of large animals 
and the non-linear relationship between body mass and consumption (Leaper and Lavigne, 2002).  

In the case of marine mammals, our model ignored seasonal difference in food intake. The annual life 
cycle of many marine mammal species includes extensive fasting periods, often coinciding with 
reproductive activities (Brown and Lockyer, 1984). Some of the methods used to estimate daily rations 
implicitly account for the seasonal differences in food intake through the adjustment of the feeding rate 
exponent, but the effects of such feeding patterns are mostly ignored in these simple models. 
Unfortunately, evaluating the impact of the lack of seasonal feeding patterns on our estimates is difficult 
as direct comparisons with other studies that have considered such seasonal variation (Kenney et al., 1997; 
Shelton et al., 1997; Sigurjónsson and Víkingsson, 1997; Boyd, 2002) are hampered by the differences in 
modeling approaches and parameterization.  

In the case of seabirds, energy requirements also fluctuate seasonally, because the energetic costs of 
various stages in the life cycle of mature seabirds differ (see e.g., Ellis and Gabrielsen, 2002). This is why 
energy demands of seabird species were estimated here using BMR and FMR for the breeding and the 
non-breeding season respectively. However, BMR and FMR values were estimated using order-specific 
allometric equations, which may generate bias in the predictions of the model.  

Diet composition 

 The composition of the diet is affected by various uncertainties, including the difficulties associated with 
obtaining diet information from sufficient sample sizes in the wild (Duffy and Jackson, 1986; Barros and 
Clarke, 2002). Diet composition estimates based on stomach content or scat analyses tend to be biased 
with respect to cephalopods, as their hard parts are less readily digested than those of other prey groups 
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and accumulate in the stomach (Furness et al., 1984; Zeppelin et al., 2004). Such biases may, however, be 
addressed by applying correction factors that compensate for differential effects of digestion on different 
prey types (Tollit et al., 1997, 2003). More serious biases are introduced, for marine mammals, by the 
predominance of stranded animals in the overall sample. Such animals may not be representative of the 
rest of the population, as they are often sick and/or their stomach contents over-represent the coastal 
components of their diet (Barros and Clarke, 2002). 

Overall, stomach and scat samples only represent brief snapshots of what is often a highly variable, 
geographically and inter- and intra-annually changing diet spectrum of a given species (Haug et al., 1995; 
Nilssen, 1995; Velando and Freire, 1999; Tamura 2001). More recently developed molecular methods, 
including stable isotope (Hobson et al., 1994; Best and Schell, 1996; Hooker et al., 2001; Das et al., 2003) 
and fatty acid (Iverson 1993, Hooker et al., 2001; Lea et al., 2002; Grahl-Nielsen et al., 2003) analyses 
allow the investigation of diets over longer time periods, but results are often difficult to interpret and 
come with their own set of uncertainties (Smith et al., 1997).  

Spatially explicit food consumption model  

There are a number of discrepancies between the species distributions that underlie our food consumption 
maps and the currently-documented occurrence of the species. This is not surprising given the broad 
approach we took.  

By their nature, predictions are often closer to likely historical distributions of species than their currently 
utilized range extent (Kaschner, 2004). The predictions likely overestimate food intake in the lower 
latitudes by not considering seasonal differences in species occurrence and associated feeding patterns. 
Many marine mammal species undertake extensive annual or semi-annual migrations that cover large 
distances between areas used primarily for foraging and reproductive purposes (Stern, 2002; Stevick et 
al., 2002). Migrations and feeding patterns have been incorporated into the model for a subset of species 
(i.e. the Great whales) in the context of another project (Kaschner et al., 2006) and results indicated that 
the consideration of these factors only exaggerated the patterns shown in Figure 5. Nevertheless, there are 
on-going efforts to generate seasonal RES predictions for all marine mammal species in the near future 
which will be incorporated in future versions of the analysis conducted here. 

Similarly to marine mammals, the current lack of consideration of seasonal difference in distributions will 
have impacted the seabird results presented here. For instance, some species of the genus Puffinus 
(shearwaters) breed in areas of the southern hemisphere. At the end of the breeding season they migrate 
to feed and winter in the temperate and polar waters of the North Pacific and the North Atlantic Oceans 
(e.g., Spear and Ainley, 1999; Ito, 2002). 

Spatially-explicit resource overlap and sensitivity analysis  

A multitude of different conceptual approaches have been developed to investigate different aspects of 
ecological niche overlap between species and communities (Hanski, 1978; Hurlbert, 1978; Chase and 
Leibold, 2003). The index developed by Horn (1966) and Morisita (1959) that formed the basis for our 
resource overlap index (Equation 3) has been deemed inappropriate to measure ecological niche overlap 
by some (e.g., Hurlbert, 1978). Hurlbert’s (1978) main criticism concerns an implicit assumption of this 
approach that the overlap index is partially determined by the niche width outside the overlap zone (i.e., 
the extent of utilization of non-shared resources by either player and the overall availability of the resource 
used is not taken into account). However, in the context of investigating marine mammal-fisheries and 
seabird-fisheries interactions, we regarded the extent to which either relied on resources not 
consumed/targeted by the others as an important factor. The abundance or availability of resources would 
be an important consideration that will partially determine the extent of actual competition between two 
players (i.e., if the resource is limited and available amounts cannot sustain existing demands of all 
present consumers). Given the index used here, our model would, for instance, predict low overlap in 
areas where both marine mammals (or seabirds) and fisheries take relatively small amounts. However, if 
the abundance of the targeted food type is very low, competition may still conceivably be high in areas of 
predicted low resource overlap.  
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Efforts are underway to develop models to generate large-scale biomass estimates of fish (Christensen et 
al., 2003) that could be incorporated into the analysis in the future. However, for the most part, global 
estimates for most prey types are currently unavailable, making the consideration of prey abundance in 
overlap equations difficult. 

Our analysis of resource overlap was affected by the biases of all input parameters as discussed above. Yet, 
the nature of the models and the type of data used make it difficult to attach a quantitative estimate of 
uncertainty to our predictions. Nevertheless, a basic sensitivity analysis was conducted by running the 
model with global marine mammal food consumption estimates that varied by an order of magnitude. 
Results showed that such variation had little to no effect on the spatial extent of areas of predicted high 
resource overlap. This indicates that areas of high overlap are largely caused by extremely high catch rates, 
due to highly concentrated fishing effort.  
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ABSTRACT 

This chapter documents the scale of production, global trade and consumption of fishmeals and oils and 
subsequent implications for food security and safety, and aquaculture. A brief overview of global 
production, trade, and consumption of fishmeals and fish oil from 1961 to present is presented. Trade data 
for fishmeal and fish oil commodities were reviewed and analyses indicate a significant global increase in 
the production, trade, and consumption of these forage fish products since 1961. Expansion of intensive 
food production, particularly in aquaculture, and the low relative pricing of fishmeals and oils to other 
meal products has made this growth possible. These increases in agricultural consumption are reflected in 
a change of global producers and consumers over the past 43 years. The scope for further increasing 
production in fishmeals and oils is limited, since most fisheries exploited for reduction into meals are 
fished to their biological limits. While alternatives are now being sought in some industries, consumption 
continues to increase as fishmeals and oils remain the preferred and superior feed inputs. 

INTRODUCTION 

The reduction of landed forage fish to fishmeal and fish oil was historically focused on where the fish were 
caught (see Chapter 1). However, with the cost of shipping being low relative to other costs associated with 
production, such as labour, as well as the environmental requirements for fishmeal factories, centres of 
production are changing with China emerging as a major importer of raw fish and a producer of fishmeal. 

Seafood products are widely traded in the international market place with approximately 40% of fish 
landed traded in one form or another (Delgado et al., 2003) and fishmeal and fish oil are no exceptions. 
Fishmeal and fish oil are beneficial in the intensive production of poultry, pigs and ruminants as well as 
farmed fish. While soymeal can be substituted for fishmeal, the essential fatty acids in fishmeal and fish oil 
are superior to other meals, with several benefits such as increased disease resistance. These benefits 
generate a demand for fishmeal and fish oil production throughout the world, but with landings of small 
fish for reduction focused in a few areas of the world, it is a highly traded commodity. However, the 
demand for fishmeal in the feeds of these animals is determined by the least cost of meals, especially soy, 
with the upper limit set by the taste imparted into the meat (Robinson and Crispoldi, 1971). 

Fishmeal and fish oil have been and continue to be a significant portion of these traded products. Prior to 
the 1950s, much of the fishmeal and fish oil was produced and consumed in Northern Europe, North 
America and Japan, with little international trade of either product. In the late 1950s, international trade 
in these products expanded as anchoveta fisheries and associated fishmeal and fish oil plants developed 
along the Peruvian and Chilean coasts. By the late 1960s, fishmeal and fish oil, much of it from Latin 
America, were traded globally. Japan declined as a producer of fishmeal and fish oil as its fishing fleets 
were excluded from coastal waters when other nations declared their EEZs, leaving Latin and North 
America and Northern Europe as the major producers and traders. Until recently, much of the fishmeal 
produced in Latin America was traded internationally, while most of the US production was used 
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domestically with imports supplementing domestic production, and Europe traded within the continent as 
well as overseas depending on the level of production and product quality. Over the last 10 years the 
pattern of production and trade trends have changed with the growth of aquaculture, and the emergence 
of China as a net seafood consumer. 

Historically, the bulk of fishmeal and fish oil produced and traded were consumed primarily in the 
intensive animal production sector: poultry, pigs and cattle and primarily in countries with significant 
animal production sectors. Until recently, the poultry and pig production sectors consumed most of the 
fishmeal production, with pig or poultry production dominating at the country level, depending on 
number of factors including culture. Today nearly 50% of fishmeal production is consumed in the 
aquaculture sector (Malherbe, 2005). 

The trends in production, trade and consumption are changing rapidly especially in Latin America where 
aquaculture is expanding, and in China which is developing its seafood sector. These and other changes 
are described in the following sections. 

METHODS  

Production and supply 

Annual fishmeal (all processed products combined, including feed) and fish oil production, import and 
export data from 1961 to 2001 were obtained from the FAO’s Processed Products database (FAO, 2006a) 
globally and for the top producers in 2001. The countries selected represent at least 80% of the annual 
production in 2001. Adding domestic production and imports, and subtracting exports allowed estimation 
of domestic supply. 

Trade 

The fishmeal and oil export trade matrices were compiled for the top exporters of fishmeal (Table 1) and 
fish oil (Table 2). Twenty-four countries were identified as representing the principal exporters by quantity 
of fishmeal and oil products between 1961 and 2004 in six regions. These countries, accounting for 90% of 
global production, were placed in a trade matrix by exporter quantity in metric tonnes (t) to track global 
trade routes and trends over a 43-year period. These exporters represent the top 5+ countries in the 
specified region most consistently over the 43-year period, accounting for at least 80% of the fishmeal and 
fish oil exports from that region.  

Table 1. Top fishmeal exporting and importing countries from 1961, 1980, 2003; countries are 
ranked in order of their tonnage of fishmeal (UN, 2006; FAO, 2006a, 2006c and 2006g) 

Exporting  Importing 
1961 1980 2003  1961 1980 2003 
Peru 
South Africa 
Norway 
Iceland 
Angola  
Denmark 
Chile 
Canada 
Morocco 
UK/Netherlands 

Chile 
Peru 
Denmark 
Norway 
Iceland 
Germany 
Ecuador 
USA 
Canada 
Panama 

Peru 
Chile 
Iceland 
Denmark 
Germany 
USA 
Norway 
Ecuador 
South Africa 
Morocco 

 Germany 
UK 
USA 
Netherlands 
France 
Italy 
Denmark 
Switzerland 
Austria 
Singapore 

Germany 
UK 
Japan 
Sweden 
Switzerland 
Finland 
Cuba 
Poland 
Italy 
Romania 

China 
Japan 
Germany 
UK 
Denmark 
Norway 
Russian Fed. 
Spain 
Canada 
Italy 

 

Fishmeal and fish oil exporters used in the trade matrix were divided into four global regions for a more 
accurate analysis. These regions represent much of the trade in both commodities: Northern Europe, Latin 
America, USA and Canada, Africa, and ‘Other’. The ‘Other’ category includes all exporters in the specific 
commodity for a given year not in the list of top exporters by region. In this way, 100% of global trade in 
fish and oils is accounted for. Trade in the ‘Other’ category often represented a small proportion of the 
traded products and was not included in these analyses. 
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Table 2. Top fish oil exporting and importing countries from 1961, 1980, 2003; countries are 
ranked in order of the tonnage of fishmeal (UN, 2006; FAO, 2006a, 2006c and 2006g) 

Exporting  Importing 
1961 1980 2003  1961 1980 2003 
Peru 
Norway 
USA 
Iceland 
Germany 
Netherlands 
Denmark 
Chile 
UK 
Canada 

USA 
Denmark 
Norway 
Chile 
Iceland 
Panama 
Netherlands 
Canada 
Faeroe Isl. 
Sweden 

Peru 
Iceland 
Denmark 
USA 
Norway 
Chile 
Netherlands 
Germany 
Canada 
Ecuador 

 UK 
Netherlands 
Germany 
Norway 
Sweden 
USSR 
France 
USA 
Denmark 
Canada 

UK 
Germany 
Netherlands 
Peru 
Norway 
Colombia 
Belgium 
Poland 
France 
USA 

Norway 
Netherlands 
Chile 
Germany 
UK 
Canada 
France 
Japan 
Denmark 
Spain 

 

The trade matrices were derived primarily from three main sources: the FAO World Agricultural Trade 
Matrix (WATM), the FAOSTAT Fisheries: processed products database and commodity balance database 
(FAO 2006 a, b and c), and the UN commodity trade statistics database or UN Comtrade (UN, 2006). 
‘Trade Analyser’ provided additional data for select years and countries missing or having incomplete data 
(CHASS, 2006). These databases were combined for a more complete and accurate data set than either 
group could provide individually. The data are presented based on export quantities by net dry weight (t or 
1000 t) from the source country to the trade partner. UN Comtrade values were converted from kilograms 
and FAO values were rounded up to the nearest whole tonne. 

Commodity categories were chosen based on their relevance, completeness, and time span covered by the 
dataset. As most of the trade data were derived from Comtrade, the trade matrix used in this analysis was 
configured to the same ‘exporter country-to-export partner’ format, as well as most of the available data 
from other sources (Trade Analyser, FAO etc.) which were also focused on exports. The availability of data 
from the combined databases covers a 43-year period, from 1961 to 2004. Data for exporters but not trade 
partners were available through FAOSTAT for 1961; trade matrix data exists from 1962 onward. The bulk 
of the data from 1997-2003 originated from WATM, while the remainder of the data originated in the UN 
Comtrade database. A matrix composed of 24 trading countries was analysed in this chapter (Appendix 1). 

While every effort was made to use trade categories where the use was explicitly stated not for human 
consumption, this was not the case for the categorization scheme of the UN Comtrade and FAO datasets. A 
detailed description of the terms and rules in estimating trade flows is given in Appendix 2. 

The trade matrix data for fishmeal was derived from FAOSTAT Code 1174 ‘Fish Meal’ and UN Comtrade 
commodity category Standard International Trade Classification (SITC Rev.1 using data from 1962) Code 
0814, ‘Meat & fish meal, unfit for human consumption’. SITC Rev. 1 was used as this category was the 
most comprehensive and complete. FAOSTAT defines fishmeal as “flours, meals, and pellets from fish, 
crustaceans, mollusks, or other aquatic invertebrates used for feed” (FAO, 2006c). UN Comtrade’s defines 
fishmeal as “Animal Feed Made from Meat, Meat Offal, Fish, Crustaceans, Mollusks, or Aquatic 
Invertebrates” (UN, 2006). 

The meat meal content contained within the ‘trade-matrixed’ Comtrade fishmeal trade category was 
adjusted in the compiled dataset to reflect only fishmeal quantities to more accurately represent the flow 
of fishmeal from exporter to trade partner. The annual proportion of meat meal to the combined meat and 
fishmeal category in the FAO Commodities Balance database (containing only total export quantities) 
(FAO, 2000c) was used to estimate the fishmeal proportion in UN Comtrade database, which did not 
contain data for meal meals. 

It was assumed that all databases used in analysis were consistent in their quantities of fishmeals 
reported. Based on this assumption, trade categories where the meat and fishmeal commodities were 
combined were treated as having the same proportions of meat meals and fishmeals as in the two 
categories where meat and fish meals were separate. Only countries with proportions of meat meal >5% 
had their totals adjusted; some country totals may therefore still contain negligible amounts of meat meal. 
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For the year 2004, where there were no FAO statistics available for meat meals, the proportions from 
2003 were used. This method for adjusting fishmeal volumes was validated using independent data from 
Macer (1974) and described in Appendix 3. 

The fish oil trade matrix data was also derived from both the UN Comtrade and FAOSTAT databases. 
FAOSTAT Code 1223 was used and is defined as “Fats and oils from fish and marine mammals extracted 
from the body or liver, whether or not refined, but not chemically modified” (FAO, 2006d). Code 4111 
"(Fats and Oils of Fish and Marine Mammals" which the UN Comtrade defines as “Fats and oils and their 
fractions, of fish or marine mammals, whether or not refined, but not chemically modified” was also used 
(UN, 2006). There was no explicitly stated category defining fish oils unfit for human consumption in 
either database. It is possible that a human consumption component may be present, but it is assumed to 
contribute negligible amounts. 

The marine mammal oil content contained within the oils trade category was removed where possible, 
using the available Comtrade data from Code 41113 “Oils and Fats of Marine Mammals” to more accurately 
represent the true flow of fish oils from exporter to trade partner. Data on marine mammal oils in UN 
Comtrade were available and were subtracted from the combined category. Prior to 1976, however, no 
marine mammal oil category data were listed in Comtrade and no data for these oils exist in FAOSTAT; 
marine mammal oil proportions from 1976 were therefore used to remove estimated marine mammal oil 
components from the years prior to 1976. 

DATA LIMITATIONS 

While every effort was made to ensure data accuracy and consistency, there are some limitations to the 
trade matrix. Trade commodity categories, for the most part, do not include exclusively ‘fishmeal’ or ‘fish 
oil’ unfit for human consumption categories, with the exception of some later years, or data are not in a 
matrix format. Although categories were adjusted where possible to better reflect only these commodities, 
trade quantities may still be over-estimated, especially for certain countries where meat meals or marine 
mammal oils may exist in the commodity category.  

Data availability for some countries and some years is poor or inconsistent. This absence of data varies in 
duration depending on the country in question, and was either apparently random or systematic (e.g., a 
country may only report every 2 years). In many cases it was unclear if there was no trade from those 
countries, or just no data available. These inconsistencies may under-estimate total exports from the 
region and country in question. This was particularly the case in earlier years (e.g. 1962. and latter years 
(e.g., 2004) of the 43-year time period; therefore, 1962 and 2004 were excluded from the analysis. 

There were data inconsistencies within and between databases. Commodity categories from both the FAO 
and UN Comtrade were a compilation of a number of different international commodity classification 
schemes, each with their own limitations. The FAO and Comtrade list in their disclaimers that the degree 
of comparability between classification systems is plagued with uncertainty (FAO, 2006a). While human 
error may contribute a minimal amount, errors may also be attributed to these differences in reporting 
and the classification systems used by the UN and the FAO (See Appendix 2). 

Meal quantities reported by FAOSTAT and WATM differ from each other either minimally (≤10%) or 
significantly (>10%) depending on the year and country involved. FAO commodity balance numbers are 
significantly lower than WATM and the processed products database. WATM has the greatest quantities 
listed while FAO processed products are in between the two. All sources indicate that their unit of measure 
is exports in ‘metric tonnes’ (ie., t) and is the net/product weight for processed fish commodities (FAO 
2006a). The UN Comtrade database also differs in quantity reported by the FAO’s databases, and 
depending on the year or country reporting this quantity may be higher or lower from the FAO quantities 
reported. 

Specific countries are also highly variable in reported quantities between trade databases, particularly with 
respect to fishmeal. The USA, Germany, Denmark, Belgium, Argentina, Ecuador, and Panama were 
notable in this respect. The collection and processing of the data collected in these two systems may be one 
explanation for these differences. Changes in political boundaries (e.g. the re-unification of Germany) and 
consequential changes in departments responsible for fisheries statistics may also account for differences 
in reporting. 
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AQUACULTURE AND FISHMEAL CONSUMPTION 

The amount of fishmeal (as feed) consumed in the aquaculture sector was estimated for countries with 
major fishmeal supplies in 2001 (Table 3) for 1980, 1985, 1990 and 1995-2001. This analysis starts in 1980 
since that is the earliest year that written information on feed ratios, fishmeal content and usage starts. 
The countries listed in Table 2 represent over 80% of the global fishmeal supply in 2001. Like many 
countries in Asia, China, India, Indonesia, The Philippines, Thailand and Vietnam have large supplies of 
fishmeal and they also use bycatch as direct feed in aquaculture, which is often not recorded in official 
production statistics. This makes it difficult to reliably estimate the use of fishmeal in the aquaculture 
sector for these countries (FAO, 2005).  The following conventions are used:  

Fishmeal Consumption (i) = aquaculture production (i)*FCR (i) * USE (i) * CONTENT (i) for species (i) 

Where FCR = Food Conversion Ratio; 

USE = proportion of fish raised on fishmeal; and 

CONTENT = the proportion of aquafeed that contains fishmeal. 

Table 3. Comparison of countries producing and consuming fishmeal. Highlighted in 
bold are major producers but not consumers; countries in italics are where there are 
major supplies (after adjusting for imports and exports) but not production in 2001 
(FAO, 2006a). 

Top 20 Countries for Production Top 20 Countries for Consumption 

Peru China 
Chile Japan 
China Denmark 
Denmark Thailand 
Thailand Norway 
United States of America United Kingdom 
Norway United States of America 
Iceland USSR, Former Area of 
Japan Spain 
Morocco Chile 
Mexico The Philippines 
Spain Mexico 
USSR, Former Area of Canada 
South Africa Indonesia 
Ecuador South Africa 
India Italy 
United Kingdom Netherlands 
Faeroe Islands India 
Sweden Morocco 
Pakistan Greece 

 

The consumption estimate is based on FAO’s aquaculture production database (FAO, 2006e). Feed 
conversion ratios, the proportion of production using fishmeal, and the proportion of fishmeal in 
aquafeeds was used to ‘back calculate’ the volume of fishmeal needed for producing the recorded volume 
of cultured species that consume fishmeal.  
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The conversion factors used are based on the work of Tacon (1997) and FAO (New and Wijkstrom, 2002). 
The species used varied between countries, and included freshwater production where appropriate. The 
use of fishmeal in China’s aquaculture was adjusted further based on Yang (2003), who reported that 40% 
of imported fishmeal is used for aquaculture. The fishmeal consumed is expressed as a percentage of total 
fishmeal feed supply for countries making up more than 80% of the total fishmeal feed supply globally. In 
estimating the percentage of the supply consumed in the aquaculture sector average values were used for 
the conversion ratios, resulting in percentages over 100% for countries with better than average feed 
systems. For these countries it was assumed that the total national fishmeal supply was consumed by the 
aquaculture sector. The method was validated using known percentages for China (Jiwu and Rortveit, 
2004; Yang, 2003) and Europe (FIN, 2003) in early 2000.  

RESULTS 

Production and Supply 

Globally fishmeal production and supply has increased steadily since 1961, when data first became 
available (Figure 1). The variation in production reflects the variations in landings due to climatic factors 
such as El Niño. Fish oil production, however, appears to be steady at around 1 million t annually (Figure 
1). A comparison between production and supply highlights discrepancies in fishmeal data from the mid 
1990s, where the difference between supply and production is positive and large with differences of 3% to 
11% of annual production. This may be due to re-exports of fishmeal. However, re-export data starting in 
1976 in the FAO Fisheries Trade database (FAO, 2006f) does not suggest an increasing trend in re-exports 
of fishmeals for the same time period (Figure 2). 

 
Figure 1. Global trends in the production and supply of fishmeal and fish oil from 1961 to 2001 (FAO, 2006a). 

Chile and Peru are the world’s top fishmeal producers, but the geographic focus of where fishmeal and fish 
oil is produced has diversified from countries which land the fish used in reduction to other countries 
where investment, labour and environment requirements are more favourable for the industry, such as 
China (Figure 3). Countries that are major fishmeal producers are also not necessarily major consumers of 
fishmeal, as seen in Table 2. The consumption of fishmeal (based on supply) has changed from being 
dominated by Europe, the former USSR and the United States in the 1960s to China, Japan, Thailand and 
Denmark in 2001 (Figure 4). 



Fishmeal and fish oil: production, trade and consumption, B. Campbell and J. Alder  53 

 

 
Figure 2. Documenting the recent uncoupling of fishmeal from fish oil production. Fishmeal and fish oil ‘net’ (i.e., 
export – local production), and re-exports (dotted line) are not the reason for the increase of fishmeal relative to fish 
oil (see text). 

 
Figure 3. Top 5 fishmeal producing countries from 1961 to 2001 (FAO, 2006a).   

The same countries that dominate fishmeal production also dominate fish oil production with Japan 
declining in importance since the early 1990s (Figure 5). Countries with major supplies of fish oil are not 
the same as for fishmeal with Norway having the largest supply in 2001, followed by Chile, while China is 
well below other countries (Figure 6). This difference is due to Chile and Norway focusing on salmon 
aquaculture, while China’s supplies of fishmeal are used for a range of intensive animal food production 
systems and not just aquaculture. 
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Figure 4. Top 5 consumers of fishmeal from 1961 to 2001 (FAO, 2006a). 

 
Figure 5. Top 5 producing countries of fish oil from 1961 to 2001 (FAO, 2006a). 
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Figure 6.Top 5 consumers of fish oil from 1961 to 2001 (FAO, 2006a).  

Fishmeal Trade 

Fishmeal is traded globally with much of the raw material originating in three regions: Latin America 
(Pacific coast), Northern Europe and North America (North Atlantic and Alaska). Fishmeal and fish oil 
produced in these regions are exported to Europe, Asia, North America and Latin America. There is trade 
within the regions, especially within Europe and North America, but less so within Latin America. 

Fishmeal exports have been steadily increasing since 1961, in the three main producing regions, despite 
the high variability in global export volumes (Figure 7). Between 1961 and 2004, approximately 129 
million metric t (product weight) of fishmeal was produced globally (Thomson, 1990; Barlow, 2002; 
Zaldivar, 2004). The 24 countries in the trade matrix represented approximately 90 % of the global trade 
in fishmeal over the 43 years. Five of these countries (Peru, Chile, Denmark, Norway, and Iceland) account 
for approximately 76% of the total world exports. China is the largest importer of fishmeal, and is sourcing 
the product from Latin America, North America and Northern Europe. Over the same time period Peru 
alone accounts for over 39% of global exports. Very little trade currently occurs with Africa and Oceania.  

 
Figure 7. Regional fishmeal exports 1961 to 2001 (FAO, 2006g). 
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Latin America, primarily Peru and Chile are the biggest exporters of fishmeal globally with fishmeal 
shipped throughout the world (Figure 7 and Figure 8). Significant declines in exports from Latin America 
correspond to strong El Niño years in 1972/73 and 1997/98 (Figure 7). Peru and Chile accounted for over 
56% of the global exports. Most of the product was shipped to Europe prior to the 1990s; since then Asia is 
now the largest market for Latin American fishmeal with Japan, China and Taiwan as the largest 
importers (Figure 8). Prior to the 1980s, the major European importers were Germany, Italy, Poland and 
Spain; in 2000 the major importers were Spain, Italy, Germany, Norway and the United Kingdom. The 
USA has historically been the main North American importer of Latin American fishmeal, but total 
imports have not changed significantly relative to Asia and Europe, especially since the 1990s. 

 
 
Figure 8. Amount (in 1000 t) of fishmeal exported from Latin America to other regions and within the region in 1975 
(left) and 2000 (right); numbers in bold are the year of export. The circles’ radii are proportional to total export. 

Northern European fishmeal production is traded extensively and contributes more than 25% of the global 
fishmeal export quantities. Exports from Northern Europe have generally ranged between 600 and 800 
thousand t since the mid-1960s. Most fishmeal was historically and is currently traded within Europe 
(Figure 9). Four countries, Denmark, Germany, Iceland, and Norway account for 93.5% of regional 
fishmeal exports and 24% of total global exports. Denmark alone accounts for 8% of the global exports 
over the 43-year time period. The main importing countries prior to the 1980s were the United Kingdom, 
Sweden and Germany; in 2000, the main importing countries were the United Kingdom, Netherlands and 
Norway. There have been modest increases in exports to Asia since 1975, primarily to Japan, Taiwan, 
Thailand, and China, with South Korea emerging as a player in the late 1990s. Exports to North America 
have increased since 1975 but not to the levels seen in the early 1970s. 

 
 
Figure 9. Amount (in 1000 t) of fishmeal exported from Northern Europe to other regions and within the region in 
1975 (left) and 2000 (right), numbers in bold are the year of export. The circles’ radii are proportional to total export. 

The USA and Canada have been almost exclusively net importers of fishmeal since 1961, and they are a 
minor contributor with 3% of the global export of fishmeal. Most North American fishmeal production is 
traded between the United States and Canada (Figure 10). Prior to the 1980s Europe, in particular the 
United Kingdom, was a significant importer of North American fishmeal. However, by 2000 imports to 
Europe were insignificant. Exports to Latin America have increased since 1975 but have decreased from 
levels seen during the period of peak imports during the late 1980s to the late 1990s. Exports to Asia have 
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also increased, particularly since the 1990s. These two regions imported virtually no fishmeal from North 
America in the 1970s, but by 2001 imports had increased significantly. 

 
 
Figure 10. Amount (in 1000 t) of fishmeal exported from North America to other regions and within the region in 
1975 (left) and 2000 (right), numbers in bold are the year of export.  The circles’ radii are proportional to total export. 

Africa is the only region to decrease its quantities of fishmeal exported over time. Export quantities from 
the six major African countries reached nearly 400,000 t in 1968, and averaged approximately 270,000 t 
of fishmeal exports a year from 1961 to 1975/76 when exports abruptly decreased to an average of 32,000 t 
a year until the mid-1980s. South Africa and Angola are responsible for this large decrease in exports: 
From 1975 to 1976 South Africa’s exports of fishmeal dropped from 147,000 t to 45,000 t and the country 
remained variable in its reporting until the late 1990s. After 1976, Angola only reported exports for three 
more years over the entire time period; this is most likely a reflection of the political instability of the 
country. 

Fish Oil Trade 

Global exports of fish oils have remained relatively steady since 1961 with only a minor gradual growth in 
exports starting in the late 1970s (Figure 11). Quantities exported remained for the most part between 600 
and 950 thousand t over the 43-year period. These steady trends are reflected in Northern Europe and 
North America. However, Latin America is highly variable, though increasing since 2000. 

 

Figure 11. Regional fish oil exports 1961 to 2001 (FAO, 2006g; UN, 2006). 
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Between 1961 and 2003, approximately 35 million t of fish oil were exported globally (FAO, 2006b), 
averaging around 1 million t a year (Figure 1). Twenty exporting countries within the fish oil trade matrix 
represent over 68% of global fish oil exports from 1961-2004, with the remaining 32% exported by the rest 
of the world. Six countries, Norway, Denmark, Iceland, Peru, Chile, and the USA, represent over 62% of 
global fish oil exports. Peru is the largest exporter of fish oils over time with 17% of the global trade, 
followed by the USA and Norway. 

Fish oil is also traded globally, and much of the trade is sourced in the same three regions as for fishmeal: 
Latin America (Pacific coast), Northern Europe and North America (North Atlantic and Alaska). Fish oil 
produced in these regions is exported to Europe, Asia, North America and Latin America. There is some 
trade within the regions, especially within Europe and North America, but comparatively little within 
Latin America, at least until recently, with Chile importing oil from Peru. Norway is the largest world 
importer of fish oil, followed by Chile, the UK, and Denmark; all have significant aquaculture sectors. 

Latin America, primarily Peru and Chile, is also a significant exporter of fishmeal globally, with fish oil 
shipped throughout the world, especially in the last 20 years (Figure 11). Europe continues to be the major 
importer of fish oil from Latin America, with Germany and the Netherlands as the largest importers. Asian 
imports of fish oil have increased since the 1970s, and North American imports have declined (Figure 12). 
Prior to the 1980s, the major European importers were the Netherlands, Germany and the United 
Kingdom; in 2000 the major importers were Norway and the Netherlands. In the 1970s the North 
American oil imports were minimal, but in 2000 oil imports to Canada increased. 

 
Figure 12. Amount (in 1000 t) of fish oil exported from Latin America to other regions and within the region in 1975 
(left) and 2000 (right), numbers in bold are the year of export.  The circles’ radii are proportional to total export. 

Northern Europe’s fish oil production contributes 33% of the global fish oil exported. Exports from 
Northern Europe have generally ranged between 150 and 300 thousand t since the mid-1960s. Most fish 
oil was historically and is currently traded within Europe (Figure 13). Five countries (Denmark, Iceland, 
Norway, Germany and the Netherlands) account for 94% of regional fish oil exports and 31% of total 
global exports. Norway alone accounted for 11% of the global exports. The main importing countries prior 
to the 1980s were the United Kingdom Germany, and Sweden; in 2000, the main importing countries 
were Norway, the Netherlands, the UK, France and Denmark. There have been modest increases in 
exports to Asia, primarily Japan. Exports to North America have increased slightly since the 1970s. 

 
Figure 13. Amount (in 1000 t) of fish oil exported from Northern Europe to other regions and within the region in 
1975 (left) and 2000 (right), numbers in bold are the year of export.  The circles’ radii are proportional to total export. 

Exports of fish oil production out of North America since 1961 have not been high relative to exports of oil 
out of Latin America and Northern Europe. North America is a minor contributor with just over 12% to the 
export of global fish oils. Most North American fish oil production is traded between the United States and 
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Europe (Figure 14). Prior to the 1980s Europe, in particular the United Kingdom and the Netherlands 
were significant importers of North American fish oil. However, in 2000, European imports were 
declining while exports to Asia, in particular Japan were increasing. Exports to Latin America, Mexico in 
particular, increased from the 1970s. These two regions imported virtually no fish oil from North America 
in the 1970s, but by 2000 Mexico’s imports had increased to 25 t. 

 
Figure 14. Volume (in 1000 t) of fish oil exports from North America to other regions and within the region in 1975 
(left) and 2000 (right), numbers in bold are the year of export.  The circles’ radii are proportional to total export. 

CONSUMPTION 

Fishmeal and fish oil are primarily used for intensive food production with 24 % for pigs, 22% for poultry 
and 46% for aquaculture. A small proportion (8%) is used for ruminants, pet food and the pharmaceutical 
industries (Malherbe, 2005). Until recently, most fishmeal and fish oil was used in the production of 
poultry and pigs; this has changed with the development of aquaculture, in particular the farming of 
carnivorous species as well as changes in feeding practices for omnivorous species such as shrimp and 
tilapia. Since 1981, the proportion of fishmeal used in aquaculture has been increasing (Table 4). Where 
the aquaculture sector for high value species is well developed there has been an increase in the proportion 
of fishmeal consumed in the aquaculture sector (Figure 15).  

Table 4. Percentage of fishmeal supply used for aquaculture in countries with significant fishmeal as feed 
supplies 1980, 1985, 1990, 1995-2001 (FAO, 2006a and e; Tacon, 1997; New and Wijkstrom, 2002). 

Year 

Country 1980 1985 1990 1995 1996 1997 1998 1999 2000 2001 

Chile 0 1 23 37 46 59 72 35 57 100 
Norway 21 36 78 62 80 75 100 100 79 92 
Greece 0 4 22 74 96 100 100 100 100 88 
Canada 1 3 30 32 41 45 54 66 49 60 
Italy 13 21 22 41 37 40 58 52 48 46 
Korea, Republic of 6 5 5 10 11 42 48 51 38 35 
United Kingdom 1 4 9 21 23 23 30 34 28 32 
China 8 7 19 18 20 21 34 30 24 32 
Japan 18 21 27 21 27 26 31 30 29 29 
Spain 9 8 11 15 20 13 30 37 17 20 
Egypt 15 12 71 73 64 100 92 49 51 17 
FMR USSR 1 1 2 7 8 8 18 18 16 16 
USA 4 5 8 14 14 13 17 16 15 16 
Mexico 1 1 2 5 5 6 10 11 9 15 
Iran 1 2 3 1 1 3 3 5 6 13 
Netherlands 0 0 1 1 4 4 7 13 10 5 
Denmark 12 10 14 5 6 4 4 4 4 3 
Morocco 0 0 1 1 2 2 2 2 1 1 
South Africa 0 0 0 0 0 0 1 1 1 1 

*Although India, Indonesia, Philippines, Thailand, and Vietnam have high domestic fishmeal supplies, the proportion used in 
aquaculture is difficult to estimate since there is direct use of bycatch.  
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Figure 15. Proportion of fishmeal consumed in aquaculture for major aquaculture producing countries in 1980, 1985, 
1990, 1995-2001 (FAO 2006a and e; Tacon 1997; New and Wijkstrom 2002).  

In 1984 only 8 % of global fishmeal production was used in aquaculture; by 1988 use had grown to 10% for 
fishmeal and 16% for fish oil and by 2000 aquaculture was consuming 35% of the fishmeal and 54% of fish 
oil (Delgado et al., 2003). The use of fishmeal and fish oil by the aquaculture sector in 2002 was estimated 
to be 46% with projections to 2012 of 50% (Malherbe, 2005), with significant declines in the use of 
fishmeal in the poultry sector. In 2002, 81% of fish oil production was used in aquaculture, with 
projections of 88% in use by 2010 (FIN, 2006). 

These are global estimates based on reports of global production as well as industry reports on fishmeal 
and fish oil use, and composition in industrial feeds (Tacon 1997; New and Wijkstrom 2002). While there 
are estimates for global fishmeal and fish oil consumption for the major farmed species, there are no 
estimates of the proportion of fishmeal consumed by the aquaculture sector on a national basis. 

DISCUSSION 

The production of fishmeal has increased since 1961, while fish oil has remained relatively stable over the 
same time frame. Some of this increase is likely due to the inclusion of other species such as Blue whiting 
(see Chapter 1), which have some of the elements needed in fishmeal, but they may not have the same oil 
content as the Peruvian anchoveta and may account for the lack of growth in the oil sector. The increase in 
fishmeal could also be attributed to improved processing, which is reported to be as efficient as 4:1 
(Khemakorn et al., 2005) and an increased use of discards (Kelleher, 2005). However, a 20% 
improvement in processing does not account for all of this increase, and there is no available information 
on discards that are diverted to fishmeal.  

The scope for increasing fishmeal and fish oil production largely depends on changes in capture fisheries 
for both reduction and human consumption. There is a general consensus that current fisheries are fished 
at or beyond their maximum levels (see Chapter 1) and there is little scope for developing new fisheries for 
reduction. Some fisheries that are used for reduction and human consumption offer some scope, but this 
option risks the food security of many coastal populations (Chapter 3). This has resulted in calls for the 
aquafeed industry to find alternative feed materials (Sorgeloos, 2000).  

Peru and Chile produce much of the world’s fishmeal. However, the expansion of the fisheries and seafood 
sector in China has also changed the nature of production (Figure 3). Historically, fishmeal factories were 
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located close to where the forage fish were landed. However, over the last 5 years China has become a 
major fishmeal processing country, importing raw material and selling the processed product on the 
domestic market (Madsen, 2004). Similar changes have happened in the supply of fishmeal, with China 
being the world’s largest consumer of fishmeal, and Denmark and Thailand also increasing their supplies 
of fishmeal, while in Japan supplies are declining (Figure 4). 

Peru and Chile have emerged as major fish oil producers, while Japan and Norway have seen declines in 
their production. Norway is no longer a major producer, and it imports significant amounts. Indeed, it is 
the largest consumer of fish oil, followed by Chile. These trends reflect the demand in Chile and Norway 
for fish oil for their aquaculture sectors that are focused on salmon. 

Fishmeal and fish oil are highly traded products, with much of the material exported from Latin America. 
Exports of fishmeal have increased much faster than fish oil exports, especially in Latin America. There is 
little variation in the trade of fishmeal and fish oil from North America despite the increase in aquaculture 
in Canada (salmon) and the United States (catfish).  

Exports of fishmeal and fish oil from Latin America make a significant contribution to the national 
economies of Peru and Chile. The impact these exports have on coastal fishing communities is mixed. The 
factories processing the fish are major sources of water and air pollution, affecting the living conditions of 
coastal communities (Cerda and Aliaga, 2000). These same factories provide alternative employment for 
fishers; factory workers may have adequate incomes in countries where poverty is prevalent. Improving 
the lives of fishers and the environment in which they live can be improved by upgrading the factories to 
pollute less. However, it is more challenging to improve the incomes of the people involved in fishing and 
processing, because the price of fishmeal is determined by global factors including the price of soymeal. 
Increasing the price of fishmeal too high above soymeal can reduce demand, since animal producers can 
substitute soy for fishmeal and fish oil in animal feeds. 

The aquaculture sector has increased its use of fishmeal in feeds since the early 1990s (Table 5), but there 
is still considerable scope for the sector to increase its use of fishmeal, since only half of global production 
is used in aquaculture, with the other half primarily used by the pig and poultry sector. These sectors can 
substitute other meals such as soy for fishmeal and do so depending on the price of these commodities. 
How much more fishmeal can be diverted from pig and poultry will in part depend on the price of fishmeal 
and soy meal as well as on the increase in price consumers are willing to pay for poultry and pigs, which in 
terms of real costs are much lower than in the past, in part due to cheap feeds. It has been predicted that 
there is considerable room for diverting fishmeal from poultry to aquaculture, which currently accounts 
for approximately 23%. Clearly, as fishmeal demand increases for the aquaculture sector, the price will 
increase and pig and poultry producers will consider how the unit cost of production will change given the 
increased risk of disease and lower meat quality when substituting soymeal for fishmeal.  

There is a trade-off in replacing fishmeal and oil with plant-derived products; studies have shown that for 
young poultry and piglets, using fishmeal and fish oil in the diet increases disease resistance, decreases the 
impact of the disease if contracted, decreases the severity of inflammatory diseases, improves the 
nutritional status of animals leading to better quality and leaner meat, and improved overall production 
through better growth and food conversion rates making the unit cost of production lower compared to 
diets of exclusively plant-based meals (IFFO, 2006).  

The situation for fish oil, however, is not the same. Recent 2003 estimates allocate 87% of global fish oil 
production currently consumed to the aquaculture sector (Tacon, 2005), with much of it used for 
carnivorous fish (Table 1), and predictions indicate an increase to 88% by 2010 (FIN, 2006). There is also 
limited scope for increasing fish oil production; in fishmeal higher trophic level fish and fish that would 
otherwise be discarded can be used to produce fishmeal, but the recovery of fish oil from these fish is 
much lower than for targeted species such as Peruvian anchoveta, Capelin and herring. There is concern 
over the reliance on fish oil within the industry, especially in terms of expanding production of carnivorous 
species as well as introducing new species. The industry is continually developing new feeds and 
improving feed conversion ratios to reduce the amount of oil required, as well as searching for alternatives 
derived from cultured algae. Tacon (2004) indicated that by 2010, feed conversion efficiency should 
decrease so that the use of fish oil in feeds should be reduced by 8% for salmon. However, considering how 
fast aquaculture has expanded over the last 15 years, a saving of 8% will not be sufficient to allow for much 
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more expansion of salmon and other carnivorous species unless conversion ratios are improved 
significantly and affordable alternative feeds and oils are developed.  

Table 5. Use of fishmeal and fish oil in culturing selected finfish and crustaceans (thousand t, as fed  dry 
weight). Based on Tacon (2005), who used various sources of information for each year so that comparison of 
individual years should be conducted with caution. 

Year 
 1992 1994 1995 1998 1999 2000 2001 2002 2003 
Total fishmeal 963 1084 1728 2256 2091 2365 2585 2591 2963 
Total fish oil 234 380 494 649 662 635 669 742 802 
Salmon fish oil 60.4 169 176 265 273 285 282 530 409 

 
The use of fishmeal and fish oil in aquaculture has increased in most of the countries with a significant 
aquaculture industry. Asia is the exception, where bycatch are often fed directly to high valued species as 
noted in China (Grainger et al., 2005), Japan (Satoh, 2004), Thailand and Vietnam (FAO, 2005). The 
benefits of decreasing the amount of bycatch disposed at sea are debatable. Some argue that it is a better 
to use the fish than to return them to the ecosystem, others argue that the biomass returned to the sea is 
beneficial as it will be recycled by other organisms (Cushing, 1984). In some countries, fish bycatch is also 
a cheap source of food as seen in Ghana and therefore diverting bycatch can threaten local food security 
(Atta-Mills et al., 2004). 

The recent warnings of toxins in farmed salmon (Hites et al., 2004) are not without merit, in light of the 
considerable trade that occurs in fishmeal and fish oil. The process of reducing small fish to fishmeal and 
fish oil concentrates toxins such as dioxins in these products which when fed to animals. Therefore in 
areas where there is a high concentration of dioxins and large catches of forage fish as shown in Figure 9  
of Chapter 6, fishmeal and oil from these areas are likely to have high levels of dioxins (see also Chapter 5; 
Christensen and Booth, 2006). The fish, and consequently fishmeal and fish oil from Northern Europe 
contain the higher levels of dioxins compared to Latin America and North America and therefore, when 
these processed products are exported to other areas of the world, such as North America and Asia, 
dioxins and other toxins are also transported and enter the intensive animal food production system and 
ultimately the human food system (Figure 9 and 12).  

In countries with high aquaculture production, some farmed species that are carnivorous or of high value 
are often fed bycatch directly. However, there has been a trend in some countries to feed omnivorous and 
herbivorous fish aquafeeds containing fishmeal and fish oil to promote faster growth for a better return on 
investment as seen in China (Sorgeloos, 2000). This is only possible if fishmeal and fish oil prices are low. 

CONCLUSION 

The expansion of intensive food production, especially aquaculture over the last 25 years has driven 
increases in the production, trade and consumption of the products derived from forage fish. The low price 
of fishmeal and fish oil relative to other meals such as soy has made this growth possible. However, there 
is little scope for increasing fishmeal and fish oil production, since most of the fisheries that are exploited 
for the reduction are fished at their biological limits.  

The destination of fishmeal and fish oil is a function of the ability to meet the international price of 
fishmeal and oil as seen in China, whose its booming economy has made it possible for the country to 
become the largest importer of fishmeal (over 10% of world production). Chile has been able to capitalize 
on being one of the world’s major suppliers of fishmeal and fish oil, with low transportation costs helping 
to turn the country into a major producer and exporter of farmed salmon as well as a major exporter of 
fishmeal. Its position as a significant processor of fishmeal is being challenged by China, which is 
developing its fishmeal sector by importing fish, building factories close to shipping ports with few 
environmental regulations, and providing a large cheap labour force. The future of this development relies 
on being able to source cheap raw materials as well as being able to keep transportation costs low. 

The limited supply of fishmeal has seen a shift from it being used for intensive production of poultry and 
pig to aquaculture, and it is predicted that the use of fishmeal will continue to increase at the expense of 
the poultry sector. Aquaculture is the main consumer of fish oil and its use in aquaculture is predicted to 
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continue to increase since there are fewer alternatives compared to fishmeal. This has prompted the 
aquafeed industry to search for alternatives to fish oil, however, when these alternatives will be 
commercially available is unknown. 

The expansion of aquaculture will continue to influence the production, trade and consumption trends. 
How these trends will change depends on a number of international factors including the international 
price of soymeal and fuel, and food quality and safety standards which are all currently in a state of flux. 
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APPENDICES 

Appendix 1 

Countries analyzed in trade matrices 

Export Countries  Import Countries (Principal) 

Fishmeal Fish Oil Fishmeal Fish Oil 

North America North America North America North America 
Canada Canada Canada Canada 
USA USA USA USA 
    
Northern Europe Northern Europe Europe Europe 
Norway Norway Norway Norway 
Denmark Denmark Denmark Denmark 
Iceland Iceland Germany Germany 
Netherlands Netherlands United Kingdom United Kingdom 
Germany Germany Netherlands Netherlands 
United Kingdom Sweden Belgium Belgium 
Ireland United Kingdom Sweden Sweden 
Belgium Faroe Isl. South Europe & Mediterranean Southern Europe  
 Belgium Switzerland  
  Finland Latin America 
Latin America Latin America Fmr Yugoslavia Mexico 
Peru Peru Fmr Czechoslovakia Venezuela 
Chile Chile Fmr USSR Colombia 
Panama Panama Eastern Europe Brazil 
Mexico Mexico  El Salvador 
Ecuador Ecuador Latin America Guatemala 
Argentina Argentina Mexico Ecuador 
Uruguay Uruguay Venezuela Chile 
Brazil Brazil Colombia Peru 
Paraguay Venezuela Brazil Argentina 
  El Salvador Dominican Rep 
Africa  Guatemala Honduras 
So. Africa  Ecuador Belize 
Angola  Cuba Uruguay 
Morocco  Suriname  
Mauritania   Asia 
Namibia  Asia China 
Algeria  China China, H K SAR 
  China, H K SAR Japan 
  Japan Rep. of Korea 
  Rep. of Korea Indonesia 
  Indonesia Philippines 
  Philippines Singapore 
  Singapore India 
  Thailand Thailand 
  Malaysia Malaysia 
  Taiwan  
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Appendix 2 

Fishmeal Trade Data Rules and Definitions  

 ‘Significant’ was defined as a >10% variation in quantity values and >5% in ratio values. 

The FAO WATM data was only available configured in a trade matrix format for the years 1997-2003; 
before then data was provided as country total exports or imports for a given year (t). The data prior to 
1997 were used to compare the accuracy of reported quantities between databases, and for obtaining 
proportional ratios for removal of the meat meal component from the Comtrade data. 

In FAO, trade quantities are rounded to the nearest whole unit (FAO, 2006a). 

The UN Comtrade database also differs in quantity reported from the FAO’s databases, and depending on 
year or country reporting, this quantity may be higher or lower form the FAO quantity reported. This 
database lists its most complete data set in a Standard International Trade Classification category that 
includes both fish and meat meals. SITC classifies commodities based on their stage of production, and 
reports quantities in kg net weight (UN, 2006). The quantities are derived using either direct or standard 
unit conversion depending on the format of the data sent by the reporting country.  

The UN Comtrade data was used as it was configured in a trade matrix format based on country reporting, 
and included all trade partners globally with data from 1962-2004. The 0814 category  (meals unfit for 
human consumption) was adjusted in the compiled dataset used in this study to reflect only fishmeal 
quantities using the proportion of meat meal to the combined meat and fishmeal total export quantities in 
the FAO Agriculture database (FAO 2006c) and subtracting this from Comtrade data.  

While it was assumed that all databases were consistent in their quantities reported (and therefore in their 
proportions of meat and fishmeals in the categories that combined the two as compared to the categories 
that had these commodities separate), this was not always, the case. This may be due to differences in data 
collection techniques and categorizations between the different departments. 

Appendix 3  

Ground Truthing  Fishmeal Data  

Data from 1964-1968 for a sample of exporters and their partners (Macer 1974) were plotted against the 
quantities derived from the compiled, adjusted dataset, for the purposes of determining data accuracy. 
Macer’s 1974 study obtained its totals directly from the FAO. Peru and Chile were found to have virtually 
the same (99.9 and 98.1% respectively) total export quantities. The percent of exports sent to the UK and 
the Netherlands were also accurate to within a similar percentage. Trade to the USA and Germany was 
accurate between datasets for Chile, but these countries differed between datasets for Peru by 12% and 
17% respectively. Norwegian exports were similar to within 95%. Comparisons using Iceland and Denmark 
yielded dissimilar results, with total exports from both datasets differing by 24 and 27% respectively. 
Imports to Denmark differed by between 12 and 23% originating from Iceland, and 27 and 29% from the 
UK and the Netherlands. The USA and Germany yielded a similar percentage for Denmark. All countries 
studied displayed the same trend of slightly higher export totals in the adjusted dataset compared to the 
FAO-derived quantities, and slightly lower import percentages. The exception to this trend was Germany 
trading from Norway, Iceland, and Denmark.  
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CHAPTER 5 

GLOBAL DISPERSION OF DIOXIN: A SPATIAL DYNAMIC MODEL, WITH EMPHASIS ON 

OCEAN DEPOSITION5 
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Fisheries Centre, Aquatic Ecosystems Research Laboratory (AERL), University of British Columbia. 
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ABSTRACT 

The present study models the dispersion and deposition of airborne dioxin, a known carcinogen, on a 
global scale using atmospheric transport, with emphasis on ocean deposition. Human exposure is 
primarily through diet, and recent reporting of high levels in farmed seafood and fishmeal and fish oil 
products has increased concerns. A previously-published estimate of global dioxin production (13,100 
kg·year-1) was allocated as airborne dioxin to terrestrial ½ x ½ degree GIS cells based on a linear 
relationship between dioxin production and GDP. Dioxin was then dispersed and deposited globally to 
both land—and water—GIS cells using two seasonal, 10-year time-averaged wind patterns. Our findings 
suggest that approximately one-third (4,214 kg·year-1) of globally-produced, and atmospherically- 
transported, total dioxins are annually deposited directly into marine environments. Based on published 
Characteristic Travel Distances and decay functions for dioxins, it would take over 270 days for the 
estimated total annual dioxin production to be deposited onto the Earth’s surface, and our wind dispersion 
patterns supported previous empirical observations of regional hot spots of marine dioxin loads (e.g., NE 
Atlantic). Comparison to field observations taken from terrestrial samples of deposited dioxins suggested 
relatively good fit, with measured concentrations on average being approximately 20% higher than 
modeled data suggested. It has previously been held that the majority of dioxin emissions is deposited 
near the source of emission, and only some dioxins are known to distribute globally. Our study suggested 
that the combination of average wind direction and predominantly coastal or near-costal location of high 
GDP areas facilitate the oceanic dispersion of over 30% of the estimated total dioxin production, which 
thus becomes directly available to the marine food webs.  

INTRODUCTION 

Persistent Organic Pollutants (POP), such as DDT, dioxins and PCBs, are chemicals which generally pose 
health risks to humans and animals (Foran et al., 2005). Typically, POP are of environmental concern 
because they are persistent, biomagnify and bioaccumulate in food webs, and have adverse effects on 
human health. Dioxins and furans are a class of POPs that are known carcinogens and have other sub-
lethal effects in animals and humans (Anon., 2000). The general public first became aware of and 
concerned about these chemicals as a result of the use of Agent Orange as a dioxin containing defoliant 
used in Vietnam, and later due to industrial accidents such as in that Seveso, Italy (Baker and Hites, 
2000).  

The chemical structures of dioxins and furans are similar and consist of 75 polychlorinated dibenzo-para-
dioxins (PCDD) and 135 polychlorinated dibenzofurans (PCDF). These two classes of POPs are usually 
combined in analysis when measurements are made on contaminated animal tissues, although in some 

                                                
5 Cite as: Zeller, D., Booth, S., Lam, V., Lai, S., Close, C., Pauly, D. 2006. Global dispersion of dioxin: a spatial dynamic model, with 
emphasis on ocean deposition, p. 67-82. In: Alder, J., Pauly, D. (eds.) On the multiple uses of forage fish: from ecosystems to 
markets. Fisheries Centre Research Reports 14(3). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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cases dioxin-like PCBs are also included. In the context of the present chapter, ‘dioxin’ is meant to include 
only the 75 congeners of dioxins and the 135 congeners of furans. 

The congeners of dioxins are all lipophilic to varying degrees, and thus they bioaccumulate particularly 
well in oily tissues. However, they have different toxicology. Therefore, in order to assess the detrimental 
health effects brought about by exposure to the different forms, a relative ranking system is used in 
toxicological studies. This assigns toxic equivalency factors (TEFs) to the different forms relative to the 
most toxic congener, 2, 3, 7, 8-tetrachlordibenzo-p-dioxin (TCDD), which is given a TEF of one (Van den 
Berg et al., 1998). In this way, a total relative concentration in tissues can be assessed in terms of toxic 
equivalencies (TEQs). However, TEFs have been determined for only the 17 congeners of dioxin which are 
at least chlorinated in the 2,3,7,8 positions and of most toxicological concern (Buckly-Golder, 1999). 

Dioxins are not deliberately produced for any specific human use, but rather are formed as incidental by-
products during industrial processes, including the production of chlorinated chemicals, and as the result 
of combustion. Formation of dioxin during combustion is important globally, since some dioxins are 
known to disperse over long distances, primarily via atmospheric transport, although riverine inputs can 
be important in localized areas (Anon., 2004). Many dioxins are thought to be deposited relatively close to 
the source of emission (Brzuzy and Hites, 1996). While chemical sources of dioxin pollution (such as wood 
pulp bleaching) have resulted in localized environmental contamination, it is primarily through 
combustion that wide-spread contamination occurs due to atmospheric transport (Brzuzy and Hites, 
1996).  

For humans, approximately 90% of exposure is from dietary items, with fish, beef and dairy products 
being of prime concern (WHO, 1999). The World Health Organization (WHO) has set a Tolerable Daily 
Intake (TDI) of 1-4 picograms per kilogram bodyweight (Anon., 2000). The European Union’s limit for 
dioxin in fish is 4 pg·g-1 wet weight, while livestock and dairy products have a limit of 1-3 pg·g-1 lipid base 
(Lind, 2004).  

A global model of general emissions and depositions of dioxin homologues noted that these two processes 
were not mass balanced (Brzuzy and Hites, 1996). Global estimates of annual dioxin depositions were 
thought to be approximately four times greater than estimated emissions (13,100 kg vs. 3,000 kg, Brzuzy 
and Hites, 1996). However, it has since been shown that atmospheric photochemical reactions of 
anthropogenic-produced pentachlorophenol (PCP), a common wood preservative, can produce dioxin, and 
this atmospheric formation of dioxin from PCP is thought to account for the imbalance (Baker and Hites, 
2000).  

The focus of our study is the presence of POPs, specifically dioxins, in small pelagic or ‘forage’ fish 
(herrings, sardines, anchovies, mackerels, etc; see Chapter 1), which are the main source for fishmeal and 
fish oil production for intensive aquaculture and poultry and swine production. Farmed salmon have been 
found to contain significantly elevated levels of dioxin compared to wild salmon, with European farm-
raised salmon showing significantly higher levels of contamination than their North and South American 
counterparts (Hites et al., 2004). In order to account for the observed geographic differences in dioxin 
loads in farmed and wild-caught salmon (and other aquatic and agricultural products), we developed a 
GIS-based modeling approach to map the estimated global dispersion of dioxins via atmospheric 
transport. Given the lack of empirical measurements of ocean deposits of dioxins (Brzuzy and Hites, 1996), 
and the paucity of global dispersal model for POPs, we developed a global, spatially dynamic model for 
predicting global atmospheric dispersal and deposition of dioxins6. The aim was to predict the global 
dispersal of land-generated dioxin, and resultant deposits into the oceans, using global wind patterns and 
published travel-distance and deposition rates.  

We utilized the global spatial resolution model of ½ x ½ degree spatial cells defined and used by the Sea 
Around Us project (SAUP, 2006). The basic methodology developed in this study rested upon several 
fundamental assumptions: 

 

                                                
6 Note that, for the present, we did not include the effects of river run-off, which would increase coastal concentrations near major 
estuaries. Given the fast biogenic uptake of dioxins from water, this was assumed to have impacts primarily on ecosystems close to 
river deltas only.  
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• All dioxin was produced over land, and the amount based on published information; 

• Spatial distribution of global dioxin production was directly related to level of economic activity of 
any given area, i.e., spatial dioxin production was assumed to be proportional to GDP; 

• Dioxin dispersal was by atmospheric transport, driven by and influenced by average wind patterns 
in the lower atmosphere; freshwater run-off was not explicitly considered; and 

• Rate of deposition of dioxin to the earth surface (land or water) followed published relationships 
for characteristic travel distances for dispersion, but included simulation of diffusion. We did not 
differentiate between wet and dry deposition. 

The resultant estimate of global annual concentration of dioxin entering the world’s marine systems at the 
½ x ½ degree resolution via atmospheric dispersion was used as input parameter into marine systems in 
the trophic modeling undertaken in other sections of this report.  

METHODS 

Global dioxin emission distribution 

As starting position for our modeling simulations, we took the estimated mean total global deposition of 
dioxin (chlorinated dioxins and dibenzofurans) from the atmosphere of 13,100 ± 2,000 kg·year-1 as 
derived by Brzuzy and Hites (1996), and assumed this amount corresponded to the annual global 
production of dioxins by all sources. Hence, this was thought to also include those forms of dioxin that are 
known to form in the atmosphere via photochemical synthesis from pentachlorophenol (Baker and Hites, 
2000). We distributed this total estimated annual dioxin load to all global land cells (½ x ½ degree) using 
the assumption of linear relationship between GDP and dioxin production (Baker and Hites, 2000).7 
Global, spatialized GDP data were based on Dilley et al. (2005). It was assumed that the spatially 
distributed dioxin amounts were fully airborne above their assigned ½ x ½ degree land cells at the start of 
the dynamic dispersal phase. For technical details of the global dispersion model, see Appendix 1. 

Simulated dispersion and deposition of airborne dioxin 

Dioxin was dispersed from its starting distribution in the atmosphere above land cells by modeling 
atmospheric transport driven by global lower atmosphere wind patterns. Two global seasonal wind 
patterns, representing the two main global seasonal and monsoonal periods (April-September and 
October-March), were obtained from the European Centre for Medium-Range Weather Forecasts (Anon., 
2006). We averaged these data for the 1990-2000 time period, and recomputed the original vector-based 
data for present use into direction and velocity components by season (Figures 1, 2). The two seasonal 
global distribution models (April-September and October-March) were run separately, and thus half of the 
global estimate of dioxin production of 13,100 kg·year-1 (Brzuzy and Hites, 1996) was dispersed in each 
seasonal run, and the final deposited amounts from each run were combined to derive annual total 
deposits. Hence, we assumed equal dioxin production potential for each season. The model of dioxin 
dispersal included the use of a wind-speed dependent characteristic travel distance for dioxin to derive an 
effective decay rate and resultant deposition (Bennett et al., 1998; Beyer et al., 2000). We also 
incorporated diffusion, using published diffusion coefficient in air for dioxins (Chiao et al., 1994).  

Each seasonal model was run for 200,000 time steps (each time step representing 60 s in real time, see 
Appendix 1), which is equivalent to approximately 139 days or 4½ months in real-time, after which over 
99% of the seasonal atmospheric dioxin had been deposited into either land or water cells. Subsequently, 
the outputs from the two seasonal models were combined to derive the total annual dispersion and 
deposition of dioxin to both land and ocean cells.  

 

                                                
7  Baker and Hites (2000) found a close correlation (r² = 0.8) between the logarithm of GDP and the logarithm of annual dioxin 
production per country examined. As their log-log relationship suggested a slope of close to unity, we assumed a linear relationship 
between GDP and dioxin production. 
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a)  

 
b) 

Figure 1. Global, lower atmospheric wind patterns, separated into two seasons: a) April-September; and b) October-
March, reflecting the two predominant global seasonal and monsoonal periods. Shown are wind direction only, 
aggregated to 5 degree scale. Note that model runs were undertaken with wind resolution at ½ x ½ degree cells. 
Source: European Centre for Medium-Range Weather Forecasts (Anon., 2006). 
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a) 

 

b) 

 

Figure 2. Global, lower atmospheric wind patterns, separated into two seasons: a) April-September; and b) October-
March, reflecting the two predominant global seasonal and monsoonal periods. Shown are wind strengths only, 
aggregated to 5 degree scale. Note that model runs were undertaken with wind resolution at ½ x ½ degree cells. 
Source: European Centre for Medium-Range Weather Forecasts (Anon., 2006). 

RESULTS 

Global dioxin emission distribution 

The approach used for initial distribution of airborne dioxin (starting position for dispersion modeling) 
was based on the observation that dioxin production is generally proportional to GDP of any given area 
(Baker and Hites, 2000). Applying this relationship to the spatial distribution of the estimated global 
atmospheric dioxin load of 13,100 kg·year-1 to the ½ x ½ degree land cells, suggested several areas of 
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likely high atmospheric dioxin concentration due to high local production of dioxins (Figure 3). These 
were dominated by eastern North America, Europe, South Asia (particularly the Indian subcontinent), and 
East Asia (China, Japan and South Korea).  

 

Figure 3. Estimated spatial distribution pattern of global dioxin production, based on the published linear 
relationship between dioxin production and GDP (Baker and Hites, 2000).  

Dispersion and deposition 

The dispersion, diffusion and decay model using published characteristic travel distance and diffusion 
coefficient for dioxins (Chiao et al., 1994; Bennett et al., 1998; Beyer et al., 2000), resulted in 99.14% of 
airborne dioxin being deposited during the two seasonal runs of 200,000 time steps each (~139 days real 
time each (Table 1)). Thus, the annually-produced 13,100 kg of dioxin would take approximately 278 days 
(2 • 139 days) for over 99% to be deposited onto the earth’s surface. However, atmospheric deposition is 
not a linear process; the majority of dioxin is deposited within a much shorter time period, with 
approximately 50% and 75% of airborne dioxin deposited within 5 and 13 days of emission, respectively 
(Figure 4). Given the terrestrial sources and the non-linear deposition function, the distribution between 
land and ocean deposition was uneven, with 67% and 32% of deposited dioxin, respectively (Table 1). 
Thus, our model suggests that, on average, approximately one third of globally-produced dioxins are 
deposited directly in the ocean due to atmospheric transport.  

Table 1: Summary of seasonal and total dispersion and deposition of dioxins based on global 
atmospheric dispersal and reported atmospheric decay (deposition) functions. 

Amount of dioxin after simulation 
runsa  (kg) Time period 

Initial 
dioxin in air 

(kg) Air Land Ocean 

Percentage 
of airborne 

dioxin 
deposited 

April-September 6,550 62.2 4,572.3 1,915.5 99.05 

October-March 6,550 49.8 4,201.3 2,298.9 99.24 

Annual combined 13,100 112.0 8,773.6 4,214.4 99.14 

Percentage of total 
dioxin deposit 

  66.97 32.17  

a Seasonal runs were for 200,000 time steps, being approximately 139  days real-time each, while annual 
totals equate to 278 days (2 • 200,000 time steps).  
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Figure 4. Amount of dioxin in the air, and deposited into the ocean and land cells over time, based on the dispersion 
and diffusion model with the two seasonal models pooled. 

Spatial patterns of dispersion 

Based on the two seasonal, 10-year average wind field patterns, the global distribution of modeled dioxin 
deposition suggested several terrestrial and oceanic hot spots (Figure 5). Specifically, large parts of North 
America, most of central, northern and Eastern Europe, as well as much of the Indian sub-continent and 
East Asia have high terrestrial depositions of dioxins (Figure 5a). Under the assumption that the published 
characteristic travel distance and effective decay rate of dioxins as measured under terrestrial conditions 
also applied to oceanic conditions, it suggested that many ocean areas around the world may also have 
relatively high dioxin loads. These include the northeast and west Atlantic, Caribbean, Mediterranean, 
northern Indian Ocean, and large parts of the north-western Pacific and South China Seas (Figure 5b). 
However, several areas of relatively low concentration of dioxins also emerged, specifically parts of the 
west coast of South America and northern parts of the west coast of North America (Figure 5b). Our model 
suggested that final concentrations of deposited dioxins in our ½ x ½ degree model cells ranged from as 
low as 4.5·10-40 g·km-2 to as high as 7.5 g·km-2 for marine environments, with the April-September 
seasonal run showing a larger range of concentrations than the October-March season (Table 2).  

 

Terrestrial environments had concentrations from 7.11·10-61 g·km-2 to 55.39 g·km-2, with the larger range of 
concentrations also observed during the April-September period (Table 2). Global annual average 
concentrations were 1.25·10-2 and 4.4·10-2 g·km-2 for marine and terrestrial areas, respectively (Table 2). 
Note, however, the difference in scale between terrestrial and oceanic deposition (Figure 5a,b), confirming 
that, globally, most dioxins were deposited on land, close to their area of production (Brzuzy and Hites, 
1996). 

Table 2: Minimum, maximum and mean deposited dioxin concentrations per ½ x ½ degree cells, separated by 
season and land-versus-ocean cells.  
 Deposited dioxin concentration per cell (g·km�²) 

 Water Land 

 April-September October-March 
Annual 

April-September October-March 
Annual 

Minimum 4.46·10ֿ40 2.02·10ֿ39 8.40·10ֿ31    7.11·10ֿ61 1.51·10ֿ33   1.51·10ֿ33 
Maximum 7.46 3.21 7.54  55.39 6.77 55.80 
Mean 5.65·10³ֿ 6.81·10³ֿ 1.25·10²ֿ    2.26·10�² 2.14·10²ֿ   4.40·10²ֿ 
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a) 

b)  

 

Figure 5. Global distribution of modeled dioxin deposition, based on the two seasonal, 10 year average wind field 
patterns combined, showing spatial distribution (a) on land, and (b) in the ocean (note difference in scales).  

Validation of spatial dispersion  

In order to determine how well our dispersal and deposition algorithm replicated real-world distribution 
and deposition of airborne dioxins, we compared 107 empirical field measurements taken from soil 
samples reported by Brzuzy and Hites (1996) with the values predicted from our model runs for the same 
spatial coordinates. As no empirical dioxin measures exist for seawater samples, we had to rely on 
terrestrial validations only. Due to our spatial resolution of ½ x ½ degree cells, 11 model cells were coastal 
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in location, i.e., did not correspond to land locations. These samples were excluded from the present 
comparison, resulting in 96 actual measures being compared between modeled results and the 
corresponding empirical terrestrial field measurements. This comparison (Figure 6a) showed a significant 
positive relationship between empirical and model results with a moderate fit (p<<0.001, R2=0.203). On 
average, empirically-measured dioxin concentrations in soil were 20.6% higher than our modeled results 
suggested. The observed relationship could likely be improved by weighing the initial GDP-related 
distribution of dioxin production by an indicator of environmental and pollution standards by country, as 
our results suggest possible differences related to these standards. For example, European countries, 
which have relatively well established pollution mitigation standards, had measured values generally lower 
than suggested by our model, while North American countries (Mexico, Canada and USA), with their more 
diverse range of environmental standards, showed more variable patterns. The few available empirical 
measurements from African countries suggested our model slightly underestimated their empirical dioxin 
loading (Figure 6b), possibly because our assumptions about dioxin being linked to GDP did not account 
for the dioxins produced by extensive burning of vegetation in many parts of Africa (e.g., Cahoon et al., 
1992). Furthermore, it has been suggested that by replacing the seasonally-averaged wind patterns by 
monthly patterns and simulations, as is commonly done in atmospheric chemistry, a better fit between 
empirical deposition and modeled results might be obtainable (D. Mauzerall, University of Princeton, 
pers. comm.). 

 

Figure 6. Model validation comparison: a) between empirically-measured terrestrial dioxin depositions based on 
Brzuzy and Hites (1996) and the geographic equivalent model results from the present dispersal and deposition 
model; b) a subset of (a) showing data from European (■), North American () and African (▲) countries only. The 
significant regression for the whole data set with moderate fit (p<<0.001, R2=0.203, n= 96), is also shown. Data were 
log-converted to account for large number of small values. Note that field measurements exist only for terrestrial 
locations. 
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CONCLUSION 

To our knowledge, this is the first attempt to model the dispersion and deposition of dioxins on a global 
scale using atmospheric transport. Our findings suggest that: 

• Approximately one-third (4,214 kg) of globally-produced, and atmospherically-transported total 
dioxins are annually deposited directly into marine environments; 

• Based on published Characteristic Travel Distances and decay functions for dioxins, it would take 
over 270 days for the estimated total annual dioxin production of 13,100 kg to be deposited onto 
the earth surface;  

• Our wind dispersion patterns supported previous empirical observations of regional hot spots of 
marine dioxin loads (e.g. NE Atlantic); and 

• Comparison to field observations taken from terrestrial samples of deposited dioxins suggested 
relatively good fit, with measured concentrations being on average approximately 20% higher 
than modeled data suggested.  

It has previously been held that the majority of dioxin emissions appear to be deposited in climate zones 
near to the source of emission, and only some dioxins are known to be distributed globally, due to long-
range atmospheric transport (Brzuzy and Hites, 1996). While fundamentally concurring with this 
observation, our study suggested that the combination of average wind direction and predominantly 
coastal or near-costal location of high GDP areas facilitates the oceanic dispersion of dioxins. This caused 
over 30% of the estimated total dioxin production to be deposited directly into the marine environment 
during our simulations, thus becoming directly available to the marine food web.  
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APPENDIX  

Technical details of the spatially dynamic model for predicting wind-driven global 
distribution of dioxin 

Aims 

To predict the global wind-driven dispersion of airborne dioxin and to determine the amount of dioxin 
deposited into the ocean and on land. 

Methodology 

To estimate the global dispersion and deposition of dioxin in the ocean and on land, we developed a 
spatially dynamic model with two driving parameters: a) anthropogenic dioxin production set 
proportional to GDP; and b) global wind patterns as the primary means of long-distance dispersal of 
dioxin. Details of each parameter and methodology are explained in the later sections of this document.   

We initiated the simulations with terrestrially-produced, airborne dioxin distributed proportional to GDP 
to all land cells in a global, spatial grid system with ½ x ½ degree resolution, based on the global ½ 
degree cell system of the Sea Around Us project (given the spherical nature of the globe, this implied that 
cell surface areas and east-west dimensions varied with latitude).   

Since wind direction can vary globally between seasons (e.g., tropical monsoons), we separated the wind 
data into two time periods: April-September and October-March. We assumed equal production of dioxin 
throughout the year, thus the initial starting amount of airborne dioxin (13,100 kg) was separated into two 
halves (6,550 kg) and assigned to each seasonal time period.  

A spatially dynamic model was developed using Visual Basic (Microsoft vb.net) to predict the amount of 
dioxin transferred to neighbouring cells. We iterated the initial state of dioxin through all the cells in the 
world, applying two driving mechanisms: diffusion (independent of wind) and dispersion (wind-
dependent). Within the dispersion module, a decay function was applied to account for deposition onto 
the earth surface (land or water). These mechanisms distributed dioxin during each simulation iteration 
(time-step) to a new model state, which has some dioxin in each cell remaining in the air, and some having 
been deposited (decayed) onto the ground or water. Once dioxin was deposited, it no longer was exposed 
to the distribution mechanisms. This new state was then reapplied to the distribution mechanisms, until ≥ 
99% of the initial airborne dioxin had been deposited onto land/water. 

Data 

Below is a table that outlines the basic input data. 
 

Table A1. Basic input data for spatial model 

Data Sets Type Purpose Source Data Format 
(Resolution) 

Average N-S wind component at 
10m (April–Sept, 1990-2000) Data Grid 

Wind acts as dioxin dispersal force. 
Data were decomposed into wind 
direction and speed. 

ECMWP1 NetCDF  
(2.5 degree) 

Average E-W wind component at 
10m (April–Sept, 1990-2000) 

Data Grid - ECMWP1 NetCDF  
(2.5 degree) 

Average N-S wind component at 
10m (Oct–March, 1990-2000) Data Grid - ECMWP1 NetCDF  

(2.5 degree) 
Average E-W wind component at 
10m (Oct–March, 1990-2000) 

Data Grid - ECMWP1 NetCDF  
(2.5 degree) 

Initial concentration of dioxin in 
the atmosphere 

Interpolated 
from GDP 

Initial amount of dioxin in the air. 
Global total based on literature (Brzuzy 
& Hites, 1996) 

SAUP2 
Raster  

(2.5 arc 
minutes) 

World Table Access Percent water/land in each ½ degree 
cell 

SAUP Access table 
(0.5 degree) 

1 European Center for Medium Range Weather Forecasting. 2 GDP data based on Dilley et al. (2005) 
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Dioxin  

The amount of dioxin generated globally was set as 13,100,000 g (Brzuzy and Hites, 1996). We assigned 
the total amount of dioxin to the air above all land cells throughout the world in proportion to the Gross 
Domestic Product (GDP) of each cell, based on the documented correlation between dioxin production 
and GDP (Baker and Hites, 2000). The GDP data had a resolution of 2.5 arc minutes (Dilley et al., 2005) 
and was adjusted to 0.5 degree cells by interpolation. The interpolation was carried out using the Nearest 
Neighbour algorithm in ArcGIS.  

Dioxins, like all airborne chemicals, are subject to simple diffusion. We simulated diffusion of dioxin based 
on the published diffusion rate for 2,3,7,8-TCDD dioxin (Chiao et al., 1994),. Diffusion was the first 
operation applied in each computational time step to distribute dioxin between cells.  

The modeling of dioxin dispersion based on wind speed, wind direction and characteristic travel distance 
was the second operation undertaken in each time step. Deposition of dioxin from air to land/ocean cells 
was accounted for with an exponential decay model (Bennett et al., 1998). We applied the proportion of 
marine versus terrestrial environment per cell to the allocated dioxin deposition per cell to derive land and 
ocean deposition amounts.   

Wind  

The data consisted of global monthly daily means of east-west and north-south wind component data (m·s-

1) from the ‘40 years Re-analysis Database’ of the European Center for Medium Range Weather 
Forecasting (ECMWP)1. These data were further averaged over the 1990 to 2000 time period into two sets 
of values one set representing April to September and one set representing October to March. These values 
were applied to each 2.5-degree cell for each time period. The resulting NetCDF files were then converted 
into raster files and decomposed into wind magnitude and wind direction using the DECOMP module in 
IDRISI. The 2.5-degree resolution of the original wind data was converted to 0.5-degree cell resolution via 
the interpolation method of Nearest Neighbour.  

In this document, µ is the wind speed in m·s-1 and θ is the wind angle (0 degrees being due east). 

We are aware that the temporal resolution provided by 6-month wind fields is low, and will be re-doing 
these analyses using monthly wind grids, as is the standard in atmospheric chemistry. 

Parameter Estimation 

 
Latitude  

Latitude (lat) is defined as the current latitude in the center of a given cell. The most northerly and 
southerly row of cells have the latitude of 89.75 and -89.75 degrees, respectively. The cell latitude for the 
two rows at the equator is 0.25 and -0.25 degrees, for north and south respectively. 

Time step 

The computational time step (ts) was defined as the amount of time allowed for dioxin to travel per 
iteration. We chose a time step that was less than the time taken for the highest wind speed (µmax) to cross 
the smallest cell dimension (cdmin): 

max

min

µ
cdts ≤  

This was done to ensure that ts was not large enough for dioxin to move past any neighbouring cells in any 
one iteration. Given the latitudinal differences in east-west cell dimensions of the ½ x ½ degree cells used, 

                                                 
1 ECMWP website: http://data.ecmwf.int/data/index.html  
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the smallest dimension was taken as the east-west dimension for cells at 89.75 degree latitude (1320 m), 
with fastest global wind speed from both seasonal wind fields (21.3 m·s-1). Thus, minimum time needed at 
89 degree was 61.97 s (i.e., 1320 m / 21.3 m·s-1). We reduced this to a standardized ts of 60 s for our runs. 
Thus, the number of time steps represents minutes in real time.  

Characteristic travel distance 

The characteristic travel distance (CTD) for a chemical is defined as the distance required for its 
concentration to be reduced to 1/e (~37%) of its initial value via deposition (Bennett et al., 1998; Beyer et 
al., 2000). The amount of dioxin in the air of a particular cell was reduced by both deposition and 
transport (diffusion and dispersion) to neighbouring cells. The CTD of dioxin for the most toxic congener 
2,3,7,8-tetrachlorodibenzo-p-dioxin in air is 810 km at wind velocity of 4 m·s-1 (Beyer et al., 2000), and 
was chosen as the dispersion rate for this model.  

Cell distance 

The cell distance (d) is the coordinal distance of one of the 720 equatorial cells of 0.5 degree, and is also 
related to the circumference of the earth (40,075.16 km/720 cells). 

Wind distance 

Wind distance is the distance the wind in a given cell travels during one time step. Wind distance was 
defined as: 

ts
ts

!= µµ  

where µ represents the wind speed and ts represent the time step. 

Diffusion 

As noted above, diffusion is first applied to every cell. The amount of dioxin diffused in each time step was 
calculated as: 

tiodiffusedRaodiffused DND !=  

 

Where No is the amount of dioxin in the air in a cell at the beginning of each time step, and DDiffused Ratio was 
calculated as: 

)cos(

2

latd

tsDiffCoef
D tiodiffusedRa

!

!!
=  

Where lat is the latitude of the current cell at the center of that cell, ts is the time step, and DiffCoef is the 
diffusion coefficient of dioxin equal to 0.42 m2·day-1 or 4.86 • 10-6 m2·s-1 (Chiao et al., 1994).  

Ddiffused was then divided into 4 equal values (i.e., 25% each), and was allocated to the air of the 
neighbouring cells in the cardinal directions (north, east, south and west) of the originating cell only. This 
diffused dioxin was then available for the next iteration in the receiving cells. 
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Decay (deposition) 

The dioxin remaining in the air of a given cell after diffusion was exposed to deposition via decay. The 
amount of dioxin deposited to land and/or ocean cells from the air was calculated as: 

( ) decayRatiodiffusedodecay DDND !"=  

Where:  

CTDts

decayRatio eD /
1

!
"= µ  

Where CTD is the characteristic travel distance of 810 km at a wind speed of 4 m·s-1. The resulting Ddecay  

was then assigned to the ground/water of the current cell location and was not further exposed to any 
distribution.  

Dispersion 

The dioxin remaining in the air after diffusion and decay was then subjected to transport to neighbouring 
cells by wind-driven dispersion. The amount left for dispersion was calculated by: 

decaydiffuseddispersion DDND !!=
0

 

The amount of dioxin was then transported to neighbouring cells by a ‘four cell method’ (Figure A1). This 
method takes the entire rectangle that is above the cell and moves it in the direction of the wind at the 
reported wind speed, but limited by the time step duration. The proportions of the cell that had left the 
originating cell after ts was then calculated and moved to the corresponding neighbouring cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Visualization of method used for calculating the distribution of dioxin using dispersion. The original cell is 
denoted by 0 (bottom left). The gray square is the end state of the dioxin from cell 0 after a single dispersion iteration 
ts. i = d cos(θ) - µts cos(θ), ii = µts cos(θ), iii = µ ts sin(θ), iv = d – µ ts sin(θ), where µ ts is the wind magnitude µ·ts. 
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In Figure A1, the cell boundary grid lines are shown in light gray with the current cell (originating cell) on 
the bottom left. The final cell content after applying the given wind-direction and –speed for duration ts is 
shown as the light gray region. The area of each of the four sections of the gray square could be calculated 
as a fraction of the entire amount in the original cell, and allocated to the air of the receiving cells for the 
next iteration. 

For example, the top left region could be calculated as i • iii and the top right could be ii • iii.  Below are 
formulae to compute fractions of each region. 

Top left region:  

( ) ( )( ) ( )( )
( )Latdd

d

entireArea

iiii
tsts

cos

sincoscos

!!

!"!
=

! #µ#µ#
 

Top right region: 

( )( ) ( )( )
( )LatddentireArea

iiiii
tsts

cos

sincos

!!

!
=

! "µ"µ
 

Bottom left region: 

( ) ( )( ) ( )( )
( )Latdd

dd

entireArea

ivi
tsts

cos

sincoscos

!!

"!"!
=

! #µ#µ#
 

Bottom right region: 

( )( ) ( )( )
( )Latdd

d

entireArea

ivii
tsts

cos

sincos

!!

"!
=

! #µ#µ

 

These fractions are then added to the airborne dioxin of the respective cell for the next iteration. 

Output 

We kept track of the amount of dioxin remaining in the air of each cell after diffusion and dispersion, the 
amount of dioxin deposited either to land or ocean in each cell at each time step, the total sum of dioxin 
deposited to land or ocean in each cell, and the amount of dioxin arriving at the cell by dispersion or 
diffusion. The model was run for 200,000 time steps (approximately 138.9 days real-time), until the total 
global amount of dioxin in the air had diminished to less than 99% of starting amount (Figure 4 main 
text). 
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CHAPTER 6 

ECOSYSTEM MODELING OF DIOXIN DISTRIBUTION PATTERNS  
IN THE MARINE ENVIRONMENT8 

Villy Christensen and Shawn Booth 
Fisheries Centre, Aquatic Ecosystems Research Laboratory (AERL), University of British Columbia. 

2202 Main Mall, Vancouver, BC., V6T 1Z4, Canada 
v.christensen@fisheries.ubc.ca ; s.booth@fisheries.ubc.ca  

ABSTRACT 
We developed a spatial ecosystem model of the world’s marine environment, and used it to simulate the 
uptake of dioxin through the food web. Dioxin is assumed to be taken up by phytoplankton only when it 
enters the ocean (i.e., ‘the environment’), while uptake for other organisms is assumed to take place 
through food intake. The model was developed using the Ecopath with Ecosim modeling approach, 
specifically the Ecotracer and Ecospace models, while adding a capability to use spatial reference data to 
the modeling approach. We use global dioxin loading patterns aggregated to a spatial scale of 2º latitude 
by 2º longitude to drive the accumulation of dioxin in the Ecotracer model. In order to tune the model, we 
made an extensive literature search for dioxin-level measurements of marine organisms. The spatial 
model was able to predict loading factors and there was a strong correlation between predicted and 
observed estimates of dioxin loading based on approximately 200 samples, distributed through the food 
web (from phytoplankton to whales) and from pole to pole. The model is rather preliminary, however, and 
we recommend: (1) that studies of dioxin (and other persistent pollutants) be carried out also from low-
impact areas; (2) that modeling studies of a highly-impacted and of a low- to medium-impacted area be 
carried out to further tune the dioxin-food web model; (3) that the loading model underlying this work be 
further developed to include monthly wind patterns as well as coastal runoff impact; and (4) that the 
initial global model we developed be further developed based on the above suggested studies. The global 
model thus revised will be able to predict spatial dioxin-loading factors, e.g., in forage fishes from 
throughout the world.  

INTRODUCTION 

Concern over the freshness and quality of seafood has increased over the last decade, and most recently 
concern over the levels of pollutants including mercury, polychlorinated biphenyls (PCBs) and dioxin. The 
recent study of pollutants in salmon by Hites et al. (2004) and the continuing controversy about mercury 
in tuna highlights the need to better understand how pollutants move through marine food webs. This 
contribution builds on the dioxin deposition maps of Zeller et al. (Chapter 5) to present a model of uptake 
and transfer of dioxin up through the food web.  

The model we present here is preliminary, but it shows great promise in placing scattered observations of 
dioxin loading in marine organisms throughout the world in an ecosystem context, i.e., considering 
explicitly their food intake and their loss due to predation. Studies of dioxin in marine organisms and their 
transfer between various components of the ecosystem are lacking, which in turns makes it difficult to 
demonstrate to policy-makers the importance of understanding the role of forage fish in relation to other 
organisms, especially those that are important to humans for food, and to also illustrate the dynamics of 
how some pollutants are transferred from one organism to another. 

                                                
8 Cite as: Christensen, V., Booth, S.. 2006. Ecosystem modeling of dioxin distribution patterns in the marine environment, p. 83-102. 
In: Alder, J. Pauly, D (eds.) On the multiple uses of forage fish: from ecosystems to markets. Fisheries Centre Research Reports 14(3). 
Fisheries Centre, University of British Columbia [ISSN 1198-6727]. 
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The model covers the entire world, and hence includes areas of high dioxin loading (and high numbers of 
dioxin loading samples in marine organisms) and areas of low dioxin loading (with fewer samples). The 
model is shown to be capable of explaining much of the variance in those samples, but the fit between 
observed and predicted loadings could be improved through a number of straightforward steps detailed in 
the discussion. 

METHODOLOGY 

The Ecopath model 

The Ecopath approach and model are described in detail by Christensen and Walters (2004), while a 
User’s Guide is available as Christensen et al. (2005). In excess of a hundred ecosystem models based on 
the approach have been published (see www.ecopath.org) while there are only few published applications 
of the Ecotracer module of EwE  (Watkinson, 2001; Coombs, 2004; Booth and Zeller, 2005).  

We developed a global ecosystem model with a spatial resolution of 2 degree latitude by 2 degree 
longitude. The model includes 42 functional groups (Table 1). The model is a ‘generic’ model developed by 
us for database-driven model construction, and is a slightly modified version of the one we distribute with 
the EwE software (‘Generic37’). 

Table 1. Overview of functional groups as represented in the spatial 
ecosystem model. ‘Small’ includes species with asymptotic length, L∞ < 30 
cm; ‘medium’ have L∞ in the range 30-89 cm; and ‘large, L∞ > 90 cm.  

No. Group name  No. Group name 

1 Pelagics, small  22 Rays, large 

2 Pelagics, medium  23 Flatfish, small medium 

3 Pelagics, large  24 Flatfish, large 

4 Demersals, small  25 Cephalopods 

5 Demersals, medium  26 Shrimps 

6 Demersals, large  27 Lobsters, crabs 

7 Bathypelagics, small  28 Jellyfish 

8 Bathypelagics, medium  29 Molluscs 

9 Bathypelagics, large  30 Krill 

10 Bathydemersals, small  31 Baleen whales 

11 Bathydemersals, medium  32 Toothed whales 

12 Bathydemersals, large  33 Seals 

13 Benthopelagics, small  34 Birds 

14 Benthopelagics, medium  35 Macrobenthos 

15 Benthopelagics, large  36 Meiobenthos 

16 Reef fish, small  37 Corals 

17 Reef fish, medium  38 Soft corals, sponges, etc. 

18 Reef fish, large  39 Zooplankton, other 

19 Sharks, small medium  40 Phytoplankton 

20 Sharks, large  41 Benthic plants 

21 Rays, small medium  42 Detritus 

 

Ecopath model parameters 

The dioxin modeling is rather insensitive to initial model parameters as it seeks to estimate long-term 
equilibrium concentrations. For most groups the initial biomasses were estimated by the Ecopath model 
based on predation, catches and assumed ecotrophic efficiencies. For large sharks the initial biomass was 
set to 0.1 t·km-2 · year-1 as it was for jellyfish. For baleens and birds we used a biomass of 0.001 t·km-2·year-

1, while twice this value was used for toothed whales, and three times for seals/pinnipeds. Macro- and 
meiobenthos biomasses were set to 1.5 and 2 t·km-2 · year-1, respectively, corals to 1 t·km-2·year-1, soft-
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corals/sponges to 2 t·km-2·year-1 and benthic plants to 10 t·km-2·year-1. Other basic input were kept at the 
default values they have in the generic model.  

Catches were extracted from the Sea Around Us Project database (www.seaaroundus.org), averaged 
globally, and summed up to a global total for each functional group. The values used were representative 
for year 2000.   

Ecosim model parameters 

We used default values throughout for the Ecosim model parameters – which also are used for the 
Ecospace and Ecotracer simulations. The use of default values mainly has implications for how Ecosim 
will react to perturbations. Given that we here are aiming for long-term equilibrium solutions, this should 
not have implications for the simulations conducted as part of the present study. 

Ecospace model parameters 

We extracted spatial parameters from the Sea Around Us Project databases, which includes a large 
number of parameters all at a half-degree latitude by half-degree longitude scale: 

• Primary production estimates averages for 1998 were obtained from the GoMor database (Marine 
Environment Unit, Joint Research Centre, European Commission, Hoepffner et al. (2001) as 
modified by Lai (2004) and as described in the Sea Around Us Project website Methods Manual 
(2006)); 

• Biomass abundance for zooplankton, macrobenthos and meiobenthos was from the database 
described by Vasconcellos (2003); 

• A combined spatial biomass of small and large mesopelagic fishes was obtained from the database 
described by Vasconcellos (2003), based on the analysis of GjØsaeter and Kawaguchi (1980); 

• Depth information was obtained from the ETOPO5 dataset available on the U.S. National 
Geophysical Data Center’s Global Relief Data CD 
(www.ngdc.noaa.gov/products/ngdc_products.html); 

• Catches were obtained from the rule-based spatial allocation distribution described by Watson 
and Pauly (2001).  

We averaged (area-weighted) the half-degree estimates to the two degree latitude by two degree longitude 
spatial scale, giving us a total of 70 by 180 spatial cells, as we excluded areas above 70º latitude (north or 
south) from the analysis. 

We designed the spatial map to include two depth strata (<200 m, >200 m) within each of the 19 FAO 
statistical areas, and allocated functional groups to strata allowing nearly all groups to occur at all depths. 
Exceptions were the following groups, assigned to the shallower depth strata: small demersals, reef fishes, 
seals, corals and benthic plants. This means that available primary production is the main determinant of 
species distributions.   

DIOXIN MODELING 

We are using the time-dynamic Ecosim and the spatial-dynamic Ecospace modules of the Ecopath with 
Ecosim software system (www.ecopath.org) to predict flow patterns of biomass among species or 
functional groups in ecosystems using nonlinear functional relationships between flow rates and 
abundances of the interacting groups/species.  These flow rates (along with information about dioxin 
loading) can be used to predict changes in concentrations (and per-biomass burdens) of dioxin (or other 
organic contaminants as well as for isotope tracers) that ‘flow’ passively along with the biomass flows 
(Christensen et al., 2005). The dynamic equations for such passive flow (and accumulation) are generally 
linear dynamical equations with time-varying rate coefficients that depend on the biomass flow rates; 
these linear equations are solved in parallel with the Ecosim biomass-dynamics equations. For 
methodological details see, Appendix 1.  
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The dioxin modeling is conducted using the Ecotracer module of EwE. This module has only been used for 
a few previous studies (Watkinson, 2001; Coombs, 2004; Booth and Zeller, 2005). Here, we developed the 
Ecotracer module further to handle spatial tracer data to evaluate goodness-of-fit of the simulations. In 
previous applications the fitting procedure has not included a goodness-of-fit estimation, let alone one 
considering spatial differences. 

Dioxin loading 

We used the global dioxin loading model derived by Zeller et al. (2006) to provide spatial loading factors. 
The loading factors were available at the half degree by half degree scale, and we averaged (area-weighted) 
to derive loading estimates for each 2 by 2 degree cell in the global model (Figure 1). The loading was 
assumed to be continuous throughout the model period, with rapid breakdown of the dioxin not taken up 
by phytoplankton. This was done to avoid a massive build-up of dioxin over time and to approach an 
equilibrium loading situation.  

 
Figure 1. Dioxin loading as predicted from the model of Zeller et al. (2006). The loading is expressed with a linear 
scale ranging from low (white or light) to high (red or dark). 

Dioxin estimates 

Dioxin concentrations for marine organisms were primarily taken from literature sources, and were 
restricted to measurements taken since 1990. Sources reporting the 17 dioxin congeners of concern 
individually were standardized to toxic equivalencies (TEQs) by applying the appropriate toxic equivalency 
factor (TEF) to each of the 17 congeners. These were then summed to get the TEQ and then standardized 
to ng·kg-1 (lipid weight) for marine mammals or ng·kg-1 (wet weight) for all other organisms. 

For the model runs we assigned the samples in Appendix 2, Table A1 to spatial cells as shown in Figure 2. 
The values were read into the Ecospace module as time series, with the loading assumed to represent year 
2000 in all cases. For each simulation we ran the spatial model for the period 1980-2001, and extracted 
spatial values for year 2000 for each of the cells. Subsequently, we compared observed and predicted 
spatial dioxin loading factors.  

 
Figure 2. Locations (‘regions’, marked with diamonds) used for comparing predicted and observed dioxin 
concentrations.  
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Parameter settings for tracer model 

We assume that dioxin enters the ocean from the air, and that it, once deposited, will be taken up by 
phytoplankton very rapidly. We set the initial concentration of dioxin in the ‘environment’ (the water) to 
0.1 t · km-2, and the decay rate for the environment to 1 year-1 to minimize long-term build-up of dioxin in 
the environment. We assume that the base inflow rate of dioxin is 1 t · km-2 · year-1, and that the direct 
absorption rate of dioxin by phytoplankton is at 0.5 t dioxin · tֿ-¹ in the environment per t of phytoplankton 
· year ֿ¹.  

For fish, the main route of exposure is through trophic transfers, whereas for lower trophic organisms 
(e.g., phytoplankton, algae and invertebrates) direct uptake from the water column is the main route of 
exposure (Anon., 1998; Commoner et al., 2000). Thus, all other parameters are set to default values (0), 
so that it is assumed that dioxin passes through the food web from phytoplankton only, and that there is 
no decay of dioxin.  

RESULTS AND DISCUSSION 

We ran the Ecospace model (and hence the dioxin uptake simulations) for 22 years. This was not long 
enough for very long-lived groups to reach equilibrium with regard to dioxin loading. However, such 
groups would probably not have reached equilibrium in real life either. We thus consider the run length an 
acceptable compromise.  

An overview of predicted biomass distributions for all functional groups in the spatial model is presented 
in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Predicted biomass distributions for all 42 groups in the global ecosystem model. Scales from low (white or 
light) to high (red or dark). Groups are arranged with 1 in the upper left corner, 2 to its right, etc.  

 

The model produces what seem to be reasonable biomass distributions (Figure 4) even if it ignores 
advection and dispersion. We conclude though, that the actual biomass distributions are of minor 
importance for the present study, as our focus here is on how dioxin is added to the marine environment, 
and on how it is subsequently taken up by living groups through the food web. 
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Figure 4. Dioxin loading (logarithmic scale) for the ecosystem groupings in the global ecosystem model as predicted 
based on the Ecotracer module of EwE. The functional groups are arranged in legend with the group with highest 
loading at the end of the simulation at the top (seals), and the group with lowest loading at the bottom 
(phytoplankton).  Notice that the loading for the top four groups (seals, toothed whales, birds and baleen whales) was 
still increasing at the end of the simulation period of 22 years. 

Fitting the dioxin model to observations 

We limited the fitting to an absolute minimum, given that the data material had very few constraints to 
limit the fitting procedure. As an important measure of fit we compared spatially-explicit estimates of 
dioxin loading by functional groups as observed (Table A1 and A2) and as predicted based on the 
Ecotracer model. The results are presented as a plot of predicted versus observed values in Figure 5, while 
Figure 6 presents the ratio between predicted and observed values by sample number, and Figure 7 shows 
the plot of residuals versus fitted observations using R (Anon., 2006).  
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Figure 5. Predicted vs. observed dioxin concentrations. The dotted line indicates the expected 1:1 ratio, while the 
solid line is the regression line (r2=0.19, slope = 0.78, P<10-9 ***). The open symbols are from 4 sample areas 
considered to be outliers (see Figure 6) and thus not included in the regression. 

 
Figure 6. Ratio between predicted and observed spatial dioxin loading factors for a variety of functional groups or 
species. The vast majority (93%) of the predicted values fall within two orders of magnitude of the observed values, 
and 69% within one order of magnitude.  Solid line indicates predicted = observed values, while the two stippled lines 
indicate ±2 orders of magnitude deviations. Outliers are shown with open symbols. 
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Figure 7. Residuals vs. fitted values for the spatial dioxin loading factors. Residual plot indicates no clear systematic 
bias over the range of fitted values, i.e., they are well-behaved. Outliers are marked with sample numbers. 
 
The regression between predicted versus observed dioxin values in Figure 5 is very clear, with a correlation 
coefficient (r2) of 0.25, indicating that the model is able to explain 25% of the variation in the dioxin 
samples (see Table 2 for a regression summary). The slope of the regression (0.84) is less than expected 
(unity) but not significantly so, given the large variation in the dataset. The slope is, however, significantly 
different from zero. Thus it is unlikely that the correlation between predicted and observed values is 
occurring by chance alone. We also note that the regression is well-behaved, in the sense that the plot of 
residuals versus fitted values indicates no trend (Figure 7). 

Table 2. Regression summary for observed vs. predicted dioxin concentrations 

Call lm(formula = log(pred) ~ 0 + log(obs), weights = wt)   

Residuals Min 

-12.5782   

1Q 

-1.5285   

Median 

0.0000        

3Q 

0.9298 

Max 

3.4664 

Coefficients 
lobs 

Estimate 

0.8393      

Std. Error 

0.1054    

t-value  

7.964 

Pr (>|t|) 

1.71e-13 ***  

 

Signif. Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1    

Residual standard error: 2.336 on 183 degrees of freedom   

Multiple R-squared: 0.2574,  Adjusted R-squared: 0.2533   

F-statistic: 63.42 on 1 and 183 DF, p-value 1.71e-13   

 

Some of the predicted values were clearly outliers and not included in the regression analysis (see Figures 
5-7). We especially note four sample areas, two from polar regions and two from coastal regions in Asia 
(Table 3). For the polar regions, this may indicate a problem with the dioxin loading factors. It is well 
known that persistent organic pollutants (POP) tend to evaporate in warmer climates and to transport 
with wind and dust to eventually settle in polar regions through what has been called the ‘grasshopper 
effect’ (Wania et al., 1999), which is not captured in the dioxin loading model we are using for this study 
(Zeller et al., 2006).  
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Further, we find it likely that the two coastal areas 
highlighted as outliers in Figures 5-7 may be from areas 
that are impacted by coastal runoff (Table 3). Again, such 
processes are not captured in the dioxin loading model we 
use. We expect similar problems will occur for other 
sampling areas, and indeed noted problems in allocating 
the samples to the 2 by 2 degree map (see below). Overall, 
we conclude that the predictive model is doing a very good 
job as indicated by the significant slope of the predicted 

versus observed regression being close to unity. We are certain that further work with this model could 
lead to improvements in its capability to predict dioxin loading factors spatially and from throughout the 
food web. We emphasize that the development should include a refinement of the model for dioxin loading 
factors (Zeller et al., 2006).  

Dioxin loading 

The comparison between observed and predicted dioxin levels (Figure 5) indicates that our global 
Ecotracer model as currently implemented can predict dioxin levels within 2 orders of magnitude of 
loading. This precision can undoubtedly be improved through better tuning of model parameters. Thus, 
we find that we can use the model to predict spatial patterns of dioxin loading in the marine environment. 

We give an example of the model prediction in Figure 8 where the biomass of small pelagics is predicted, 
and in Figure 9 where the relative dioxin level, also in small pelagics, is presented at the global level.  

 

Figure 8. Predicted relative biomass distribution for small pelagics. Scale is from low to high,        
(white or light) to (red or dark).  

It is clear that the predicted dioxin levels bear a very strong resemblance to the environmental loading 
factors – as they should. We have extracted the loading factors for small pelagics by FAO areas and by 
depth strata (<200 m, > 200 m) and present the results as relative loading factors in Table 4.  

Table 3. Summary of areas with dioxin samples 
that were excluded from the regression analysis 
(see text). 

 No Area 

1 Antarctic, Ross Sea 
21 Japan, coastal 
28 Sri Lanka, Kelani River mouth 
44 Arctic, Holman, NWT 
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Table 4. Predicted dioxin loading for small pelagics by FAO 
area and depth strata. The loading factors are expressed as 
relative values.  

FAO area <200m >200m 

18 Arctic 5·105 3·105 

21 Atlantic, NW 4·106 5·105 
27 Atlantic, NE 1·107 8·106 
31 Atlantic, WC 8·106 4·105 
34 Atlantic, EC 4·105 2·105 
37 Mediterranean 5·106 1·107 

41 Atlantic SW 1·106 2·105 
47 Atlantic SE 1·106 1·104 
48 Atlantic Antarctic 1·100 1·103 
51 Indian Ocean, W 3·106 7·105 
57 Indian Ocean, E 8·105 3·105 

58 Indian Ocean, Antarctic 1·100 2·103 
61 Pacific, NW 6·106 5·106 
67 Pacific, NE 4·105 8·104 
71 Pacific, WC 2·106 2·105 
77 Pacific, EC 3·107 5·105 

81 Pacific SW 1·106 2·105 
87 Pacific SE 3·106 5·104 
88 Pacific Antarctic -- 4·101 

 

The loading factors vary more than 7 orders of magnitude between strata and FAO areas, which is more 
than they are likely to actually do. This is a consequence of the loading as predicted by the loading model 
not being dispersed widely enough, and, notably, not reaching the polar regions to any significant degree. 
We therefore consider the results expressed in Figure 8 and 9 as illustrating only the results that may be 
obtained from modeling activities of the sort carried out here.  

This form for modeling allows for predictions of what level of dioxin loading one can expect for a given 
type of marine organism in a given location as well for evaluating if the measured level for a given 
organism indicates that a given site is more or less impacted that should be expected. We consider that 
such predictive food web modeling has potential as part of monitoring programs for persistent organic 
pollutants.  

 
Figure 9. Predicted relative dioxin concentrations for small pelagics. Scale is from low to high,                        
(white or light) to (red or dark). 
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RECOMMENDATIONS 

To improve the modeling presented in this chapter we recommend that the following studies be carried 
out: 

1. Detailed studies of dioxin loading in a highly-impacted and a low- to- moderate impacted  
ecosystem along the same lines as the study of Booth and Zeller (2005). We do not have group-
specific estimates for dioxin decay rates, nor specific information about possible uptake routes for 
dioxin from the environment. Studies of this sort would help tune the global model; 

2. The samples we have obtained are largely from coastal areas, many of which are likely to be from 
areas which are more impacted than the loading model we use predicted. Samples from more 
geographic areas, notably from less impacted oceanic waters would be useful for tuning the model; 

3. The loading model of Zeller et al. (2006) should be improved to include monthly wind patterns 
and coastal runoff, and if possible to consider the ‘grasshopper effect’; and 

4. The present model should be updated based on the above studies. 
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APPENDIX 19 

The Ecotracer module of EwE 

Ecosim allows parallel simulation of one tracer or contaminant type while the biomass dynamics 
equations are being solved and we here use this approach to simulate the spatial distribution of dioxin 
based on the loading factors developed from the model of Zeller et al. (2006).  Dioxin molecules are 
assumed to be either in the ‘environment’ or in the biota (in biomass and detritus functional groups) at 
any moment.  Molecules are assumed to flow between groups at instantaneous rates (i.e., to be sampled 
along with biomass during biomass flows at rates) equal to the probabilities of being ‘sampled’ as part of 
the biomass flow: instantaneous rate = (flow) / (biomass in prey pool). We allow for direct flows from the 
environment into functional groups, representing direct uptake or absorption of the tracer material, and 
for differential decomposition/decay/export rates by pool and from the environmental pool.  
Schematically, the flow of tracer molecules through any biomass group is represented by the components 
shown below. In the rate equation for time changes in contaminant concentration in group i, these 
components are represented as follows: 

1) Uptake from food: Cj · GCi · Qji /Bj where Cj = conc in food j, GCi = proportion of food assimilated by 
type i organisms; Qji = biomass flow rate from j to i (estimated in Ecopath as Bi · (Q/B)I · DCij) i, 
Bj=food j biomass); 

2) Direct uptake from environment: ui · Bi · Co, where ui=parameter representing uptake per biomass per 
time, per unit environmental concentration, Bi=biomass, Co=environmental concentration; 

3) Concentration in immigrating organisms: ci · Ii, where ci = parameter (tracer per unit biomass in 
immigrating biomass), Ii = biomass of group i immigrants per time; 

4) Predation: Ci · Qij /Bi, where Ci=concentration in group i, Qij = consumption rate of type i organisms by 
predator type j, Bi = biomass in group i; 

5) Detritus: (Ci · MOi + (1-GCi) · Sj · Cj · Qji  ) Bj, where MOi = non-predation death rate of type i (year¹ֿ), 
GCi = fraction of food intake assimilated, Qji = intake rate of type j biomass by type i; 

6) Emigration: ei · Ci, where ei = emigration rate (per year); 

7) Metabolism: di · Ci, where di = metabolism + decay rate for the material while in group i. 

Hence, users must specify some parameters (using the Ecotracer input form) besides those needed for 
Ecopath/Ecosim mass balance and biomass dynamics calculations: 

a. initial group concentrations Ci, including environmental concentration Co; 

b. direct uptake rate parameters ui as rates per time per biomass per unit Co; 

c. concentrations per biomass ci in immigrating organisms; 

d. metabolism/decay rates di. 

The other parameters (GCi, MOi) are already entered or calculated in Ecopath, and the Qij flows are 
calculated dynamically in Ecosim.  Ecosim integrates the rate components listed above to generate time 
concentration patterns Ci (i = 0 to number of biomass group), and time patterns of concentration per 
biomass Ci/Bi for all Ecopath/Ecosim biomass group. These results can be compared to data on 
bioaccumulation or tracer movement. Discrepancies between model and data may help identify 
weaknesses in the Ecopath/Ecosim trophic flow rate (Qij) estimates, and/or in the Ecotracer rate 
parameters (ui, ei, di). 

  

                                                
9 This method description is based on Christensen et al. (2005) 
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APPENDIX 2 

Dioxin samples 

Table A 1. Concentrations of dioxins in marine organisms reported in wet weight. 

Year Common Name Species Name Area Mean 
Concentration 
(ng I-TEQ/kg) 

% 
Lipid 

Tissue 
Type 

Source 

1995 Cod  Gadus morhua UK 0.040 - muscle 1 
1993 Cod  Gadus morhua Norway 0.080 - muscle 1 
1993 Plaice Pleuronectes platessa Norway 0.180 - muscle 1 
1995 Herring Clupea harengus UK 2.100 - muscle 1 
1993 Herring Clupea harengus Norway 1.100 - muscle 1 
1995 Mackerel Scomber scombrus UK 0.660 - muscle 1 
1993 Mackerel Scomber scombrus Norway 0.610 - muscle 1 
1991 Yellow eel Anguilla anguilla Netherlands 1.800 - whole 2 
1991 Herring Clupea harengus Netherlands 1.900 - whole 2 
1991 Mackerel Scomber scombrus Netherlands 0.800 - whole 2 
1991 Sole Solea solea Netherlands 0.800 - whole 2 
1991 Cod  Gadus morhua Netherlands 0.100 - whole 2 
1991 Shrimp  Netherlands 1.200 - whole 2 
1991 Mussels Mytilus Netherlands 1.300 - whole 2 
1991 Pike perch Sander lucioperca Netherlands 0.700 - whole 2 
1994 Shrimp  Netherlands 1.340 - whole 2 
1994 Mussel Mytilus Netherlands 0.810 - whole 2 
1994 Herring Clupea harengus Netherlands 2.010 - whole 2 
1994 Cod  Gadus morhua Netherlands 0.130 - whole 2 
1994 Eel Anguilla anguilla Netherlands 2.190 - whole 2 
1994 Sole Solea solea Netherlands 0.190 - muscle 2 
1996 Cod  Gadus morhua Sweden 0.360 0.64 muscle 2 
1996 Cod  Gadus morhua Sweden 0.460 - muscle 2 
1996 Herring Clupea Sweden 10.400 7.70 muscle 2 
1996 Herring Clupea Sweden 11.000 - muscle 2 
1988 Herring Clupea Sweden 7.700 - muscle 2 
1987 Herring Clupea Sweden 6.700 - muscle 2 
1989 Herring Clupea Sweden 7.700 - muscle 2 
1996 Herring Clupea Sweden 13.000 - muscle 2 
1996 Herring Clupea Sweden 2.000 18.2

0 
muscle 2 

1988 Herring Clupea Sweden 2.600 - muscle 2 
1989 Herring Clupea Sweden 2.000 - muscle 2 
1996 Mackerel Scomber scombrus Sweden 2.800 15.9

0 
muscle 2 

1996 Norway lobster Nephrops norvegicus Sweden 0.270 0.31 muscle 2 
1996 Plaice Pleuronectes platessa Sweden 0.350 0.75 muscle 2 
1996 Sea trout Salmo trutta trutta Sweden 8.800 6.70 muscle 2 
1996 Whitefish Coregonus lavaretus 

lavaretus 
Sweden 7.300 4.40 muscle 2 

1996 Whitefish Coregonus lavaretus 
lavaretus 

Sweden 3.400 - muscle 2 

2000 Phytoplankton  Japan 0.380 - whole 3 
2000 Seaweed Porphyra yezoensis Japan 0.103 - whole 3 
2000 Seaweed Eisenia bicyclis Japan 0.103 - whole 3 
2000 Zooplankton  Japan 0.155 - whole 3 
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2000 Mysid Acanthomysis 
mituskurii 

Japan 0.514 - whole 3 

2000 Shrimp Trachypenaeus Japan 0.688 - whole 3 
2000 Shrimp Crangon Japan 1.099 - whole 3 
2000 Sandworms (Cirratulidae,Nereidae

Eunicidae) 
Japan 1.211 - whole 3 

2000 Sandlance Ammodytes 
personatus 

Japan 0.541 - whole 3 

1994 White croaker Genyonemus lineatus USA 1.300 - muscle 4 
1994 White croaker Genyonemus lineatus USA 1.460 - muscle 4 
1994 Striped bass Morone saxatilis USA 0.670 - muscle 4 
1994 Shiner surf 

perch 
Cymatogaster 
aggregata 

USA 0.890 - muscle 4 

1994 Shiner surf 
perch 

Cymatogaster 
aggregata 

USA 0.970 - muscle 4 

1994 Shiner surf 
perch 

Cymatogaster 
aggregata 

USA 0.850 - muscle 4 

1994 White croaker Genyonemus lineatus USA 1.750 - muscle 4 
1994 White croaker Genyonemus lineatus USA 0.890 - muscle 4 
1994 White croaker Genyonemus lineatus USA 0.880 - muscle 4 
1994 White croaker Genyonemus lineatus USA 0.730 - muscle 4 
1994 White croaker Genyonemus lineatus USA 0.570 - muscle 4 
1994 White croaker Genyonemus lineatus USA 1.000 - muscle 4 
1994 Striped bass Morone saxatilis USA 0.500 - muscle 4 

1994 Sturgeon Acipenser 
transmontanus 

USA 0.510 - muscle 4 

1994 Leopard sharks Triakis semifasciata USA 0.120 - muscle 4 
1994 Leopard sharks Triakis semifasciata USA 0.230 - muscle 4 
1994 Leopard sharks Triakis semifasciata USA 0.130 - muscle 4 
1994 Halibut Paralichthys 

californicus 
USA 0.120 - muscle 4 

1994 White croaker Genyonemus lineatus USA 1.040 - muscle 4 
1994 Sprat Sprattus sprattus Finland 15.400 - whole 5 
1997 Anchovy Engraulis encrasicolis Italy 0.470 3.30 muscle 6 
1997 Anchovy Engraulis encrasicolis Italy 0.340 3.20 muscle 6 
1997 Anchovy Engraulis encrasicolis Italy 0.230 1.80 muscle 6 
1997 Squid Loligo vulgaris Italy 0.250 1.90 mantle 6 
1997 Squid Loligo vulgaris Italy 0.170 1.80 mantle 6 
1997 Squid Loligo vulgaris Italy 0.120 1.20 mantle 6 
1997 Mussel Mytilus 

galloprovincialis 
Italy 0.240 1.60 meat 6 

1997 Mussel Mytilus 
galloprovincialis 

Italy 0.160 1.40 meat 6 

1997 Mussel Mytilus 
galloprovincialis 

Italy 0.110 1.40 meat 6 

1997 Norway lobster Nephrops norvegicus Italy 0.140 0.60 meat 6 
1997 Norway lobster Nephrops norvegicus Italy 0.090 0.50 meat 6 
1997 Norway lobster Nephrops norvegicus Italy 0.120 0.70 meat 6 
1997 Mackerel Scomber scombrus Italy 0.590 8.70 muscle 6 
1997 Mackerel Scomber scombrus Italy 0.940 7.30 muscle 6 
1997 Mackerel Scomber scombrus Italy 1.070 5.60 muscle 6 
1997 Red mullet Mullus barbatus 

barbatus 
Italy 0.560 4.90 muscle 6 

1997 Red mullet Mullus barbatus 
barbatus 

Italy 0.370 4.40 muscle 6 

1997 Red mullet Mullus barbatus 
barbatus 

Italy 0.370 4.30 muscle 6 
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1997 Clam Chamelea gallina Italy 0.130 1.00 meat 6 
1997 Clam Chamelea gallina Italy 0.100 1.10 meat 6 
1997 Clam Chamelea gallina Italy 0.070 0.90 meat 6 
2000 Prawns  Belgium 0.650 - - 7 
2000 Mackerel Scomber scombrus Belgium 6.200 - - 7 
1996 Mullet Liza subviridis Sri Lanka 0.520 - - 8 
1996 Cat fish Mystus gulio Sri Lanka 0.190 - - 8 
1996 Jack (Juvenile) Carangidae Sri Lanka 0.040 - - 8 
1996 Green cromide Etroplus suratensis Sri Lanka 0.150 - - 8 
1996 Mud crab Scyllar serrataa Sri Lanka 0.140 - - 8 
1996 Rabbit fish Siganus vermiculatus Sri Lanka 0.130 - - 8 
1997 Snapper Lutjanus decussatus Sri Lanka 0.210 - - 8 
1997 Cat fish Mystus gulio Sri Lanka 0.009 - - 8 
1997 Green cromide Etroplus suratensis Sri Lanka 0.004 - - 8 
1993 Sea slag  Aplysia (Varria) 

kurodai 
Japan 0.048 - meat 9 

1996 Sea urchin  Hemicentrotus 
pulcherrimus 

Japan 0.390 - meat 9 

1996 Starfish Asterina pectinifera Japan 0.220 - meat 9 
1995 Mussel  Septifer (Mytilisepta) 

virgatus 
Japan 0.910 - meat 9 

1995 Snail  Thais claviger Japan 0.054 - meat 9 
1993 Mussel Septifer virgatus South Korea 0.020 - meat 10 
1993 Clam  Anomalocardia South Korea 0.160 - meat 10 
1991 Mullet  Liza macrolepis South Korea 0.320 - muscle 10 
1993 Gizzard  Konosirus punctatus South Korea 0.530 - muscle 10 
1993 Flounder  Cleisthenes pinetorum 

herzensteini 
South Korea 0.380 - muscle 10 

2005 Eel Anguilla anguilla Norway 1.100 - muscle 11 
2004 Mackerel Scomber scombrus Norway 0.170 - muscle 11 
2004 North Sea 

herring 
Clupea harengus Norway 0.660 - muscle 11 

2004 Norway pout Trisopterus esmarkii Norway 0.260 - whole 11 
2003 Norwegian 

Spring herring 
Clupea harengus Norway 0.870 - muscle 11 

2004 Redfish Sebastes marinus Norway 0.250 - muscle 11 
2004 Saithe Pollachius virens Norway 0.030 - muscle 11 
2004 Sand eel Ammodytes tobianus Norway 0.350 - muscle 11 
2004 Halibut Hippoglossus 

hippoglossus 
Norway 1.510 - muscle 11 

1995 Krill Euphausia superba Antarctic 0.379 1.50 whole 12 
1995 Crocodile 

icefish 
Chionodraco hamatus Antarctic 0.702 2.65 whole 12 

1995 Sharp-spined 
notothen 

Trematomus pennellii  Antarctic 0.622 1.90 whole 12 

1995 Antarctic 
silverfish 

Pleuragramma 
antarcticum 

Antarctic 2.501 9.40 muscle 12 

2000 Shellfish (Mytilus + 
Crassostrea + 
Dressinia) 

France 0.800 - - 13 

2000 Sprat Sprattus sprattus 
balticus 

Russia 2.810 - - 14 

2000 Herring Clupea harengus 
membras 

Russia 11.460 - - 14 

2000 Salmon Salmo salar Russia 4.170 - - 14 
2000 flounder  Platichthys flesus Russia 2.560 - - 14 
2000 Eel Anguilla anguilla Russia 1.400 - - 14 
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2000 Cod  Gadus morhua Russia 0.120 - - 14 
2002 Chum salmon Oncorhynchus keta US 0.037 4.81 muscle 15 
2002 Chinook 

salmon 
Oncorhynchus 
tshawytscha 

US 0.139 8.60 muscle 15 

2002 Sockeye Oncorhynchus nerka US 0.253 8.22 muscle 15 
2002 Halibut Hippoglossus 

stenolepis 
US 0.001 0.46 muscle 15 

2002 Sablefish Anoplopoma fimbria US 0.004 3.17 muscle 15 
1990 Herring Clupea harengus Norway 2.300 - muscle 16 
1990 Herring Clupea harengus Norway 1.750 - muscle 16 
1993 Herring Clupea harengus Norway 1.160 - muscle 16 
1993 Herring Clupea harengus Norway 1.100 - muscle 16 
1994 Herring Clupea harengus Norway 1.400 - muscle 16 
1989 Mackerel Scomber scombrus Norway 0.700 - muscle 16 
1993 Mackerel Scomber scombrus Norway 0.500 - muscle 16 
1997 Mackerel Scomber scombrus Norway 0.560 - muscle 16 
1990 Cod  Gadus morhua Norway 0.100 - muscle 16 
1995 Cod  Gadus morhua Norway 0.040 - muscle 16 
1995 Cod  Gadus morhua Norway 0.020 - muscle 16 
1996 Cod  Gadus morhua Norway 0.120 - muscle 16 
1992 Plaice Pleuronectes platessa Norway 0.160 - muscle 16 
1994 Plaice Pleuronectes platessa Norway 0.200 - muscle 16 
1996 Flounder  Platichthys flesus Norway 0.160 - muscle 16 
1991 Eel Anguilla anguilla Norway 2.000 - muscle 16 
1991 Eel Anguilla anguilla Norway 1.800 - muscle 16 
1996 Herring Clupea harengus North Sea 0.567 - muscle 17 
1996 Herring Clupea harengus Baltic Sea 1.905 - muscle 17 
1995 Herring Clupea harengus Ireland 0.449 - muscle 17 
1998 Herring Clupea harengus Norway 0.976 - muscle 17 
1996 Mackerel Scomber scombrus Bay of 

Biscay 
0.317 - muscle 17 

1997 Mackerel Scomber scombrus North Sea 0.330 - muscle 17 
1995 Ocean perch Sebastes Greenland 0.171 - muscle 17 
1997 Ocean perch Sebastes Norway 0.182 - muscle 17 
1997 Ocean perch Sebastes North Sea 0.420 - muscle 17 
1995 Sardine Sardina pilchardus Bay of 

Biscay 
0.603 - muscle 17 

1995 Catfish Anarhichas Greenland 0.388 - muscle 17 
1997 Catfish Anarhichas Norway 0.671 - muscle 17 
1996 Greenland 

halibut 
Reinhardtius 
hippoglossoides 

Greenland 0.541 - muscle 17 

1997 Greenland 
halibut 

Reinhardtius 
hippoglossoides 

North Sea 1.494 - muscle 17 

1997 Greenland 
halibut 

Reinhardtius 
hippoglossoides 

Faroe 
Islands 

1.105 - muscle 17 

1997 Greenland 
halibut 

Reinhardtius 
hippoglossoides 

Iceland 1.469 - muscle 17 

1997 Greenland 
halibut 

Reinhardtius 
hippoglossoides 

Norway 0.370 - muscle 17 

1995 Hake Merluccius Bay of 
Biscay 

0.086 - muscle 17 

1998 Hake Merluccius Pacific 0.030 - muscle 17 
1998 Hake Merluccius Chile 0.005 - muscle 17 
1998 Hake Merluccius Argentina 0.006 - muscle 17 
1996 Plaice Pleuronectes platessa North Sea 0.288 - muscle 17 
1997 Plaice Pleuronectes platessa German 0.355 - muscle 17 
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Bight 
1996 Saithe Pollachius virens North Sea 0.098 - muscle 17 
1997 Saithe Pollachius virens Norway 0.025 - muscle 17 
1995 Cod  Gadus morhua North Sea 0.054 - muscle 17 
1997 Cod  Gadus morhua Norway 0.041 - muscle 17 
1998 Alaska pollock Theragra 

chalcogramma 
Canada 0.007 - muscle 17 

1995 Shrimps Pandalus borealis Greenland 0.121 - muscle 17 
1997 Shrimps Pandalus borealis Norway 0.251 - muscle 17 
1998 Brown shrimp Crangon crangon North Sea 0.882 - muscle 17 
1998 Blue mussel Mytilus edulis Denmark 0.390 - muscle 17 
1995 Squid Loligo Bay of 

Biscay 
0.117 - muscle 17 

2002 Blue crab Caliinectes sapidus Brazil 1.500 - - 18 
1999 North Pacific 

beaked whale 
Mesoplodon 
stejnegeri 

Japan    12.41379 2.90 muscle 28 

1999 Finless black 
porpoise 

Neophocaena 
phocaenoides 

Japan    11.00000 5.40 muscle 28 
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Table A 2. Concentrations of dioxin in marine mammals reported in lipid weight. 

Year Common name Scientific name Area Mean 
concentration  

(ng TEQ·kg¹ֿ of 
fat) 

% 

lipid 
Tissue 
type 

Source 

1990s Hector's dolphin Cephalorhynchus 
hectori  

New Zealand 27.27181 - blubber 19 

1990s Common dolphin Delphinus delphis New Zealand 0.22950 - blubber 19 

1990s Gray's beaked 
whale 

Mesoplodon grayi New Zealand 0.34580 - blubber 19 

1990s Minke whale Balaenoptera 
acutorostrata  

New Zealand 0.35355 - blubber 19 

2002 Sperm whale Physeter catodon Australia 4.00000 - blubber 20 

2002 Gray’s beaked 
whale 

Mesoplodon grayi Australia 0.57000 - blubber 20 

2002 Sperm whale Physeter catodon Australia 2.68000 - blubber 20 

2002 Long-finned pilot 
whale 

Globicephala mela Australia 0.65000 - blubber 20 

- Humpback 
dolphin 

Sousa chinensis Australia 14.92000 - blubber 20 

2000 Bottlenose 
dolphin 

Tursiops truncatus Australia 0.00000 55.00 blubber 21 

2000 Bottlenose 
dolphin 

Tursiops truncatus Australia 0.00035 56.00 blubber 21 

2000 Bottlenose 
dolphin 

Tursiops truncatus Australia 0.86400 75.00 blubber 21 

2000 Bottlenose 
dolphin 

Tursiops truncatus Australia 4.39000 54.00 blubber 21 

1990s Harp seal Phoca groenlandica Greenland 5.75000 - blubber 22 

1996 Dugong Dugong dugon Australia 17.30000 - blubber 23 

1999 Dugong Dugong dugon Thailand 12.00000 2.45 muscle 24 

2001 Dugong Dugong dugon Thailand 11.00000 2.41 muscle 24 

1991 Harbour seals Phoca vitulina Vancouver 
Island 

2.83000 96.50 blubber 25 

1991 Harbour seals Phoca vitulina Vancouver 
Island 

7.15000 96.40 blubber 25 

1995 Grey seals Halichoerus grypus Nova Scotia 3.23000 79.50 blubber 26 
1995 Weddell seal Leptonichotes 

weddelli 
Antarctic 3.62600 100.00 blubber 12 

1991 Ringed seals Phoca hispida Arctic 3.82000 89.10 blubber 27 
1996 Ringed seals Phoca hispida Arctic 3.73000 96.30 blubber 27 
2000 Ringed seals Phoca hispida Arctic 1.02000 91.40 blubber 27 
1996 Ringed seals Phoca hispida Arctic 1.74000 93.60 blubber 27 
2000 Ringed seals Phoca hispida Arctic 0.43000 91.50 blubber 27 
1999 North Pacific 

beaked whale 
Mesoplodon 
stejnegeri 

Japan 9.65854 82.00 blubber 28 

1999 Finless black 
porpoise 

Neophocaena 
phocaenoides 

Japan 7.59740 77.00 blubber 28 
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Table A 3. List of references for sources of dioxin concentrations in fish and other marine organisms. 

Source 
no. 

Reference 

1 Anonymous. 1999a. Dioxins and PCBs in UK and Imported Marine Fish. Ministry of Agriculture, Fisheries 
and Foods Food Surveillance Information Sheet 184. 
http://archive.food.gov.uk/maff/archive/food/infsheet/1999/no184/table7.htm. Accessed: February 10 
2006. 

2 Anonymous. 1999b. Task 4: Human Exposure-Technical Annex, 629 pp. In: Compilation of EU Dioxin 
Exposure and Health Data. Ed.: D. Buckley-Golder. AEA Technology, Culham UK. 

3 Okumara, Y., Yamashita, Y and Kohno, Y. 2004. Bioaccumulation of PCDD/Fs and Co-PCBs in Lower 
Trophic Level Organisms in Sendai Bay, Japan. Water, Air, and Soil Pollution 159, 291-312. 

4 Fairey, R., Taberski, K., Lamerdin, S., Johnson, E., Clark, R.P., Downing, J.W., Newman, J., Petreas, M. 
1997. Organochlorines and Other Environmental Contaminants in Muscle Tissues of Sportfish 
Collected from San Francisco Bay. Marine Pollution Bulletin 34, 12, 1058-1071. 

5 Vuorinen, P.J., Parmanne, R., Vartiainen, T., Keinänen, Kiviranta, H., Kotovuori, O., Halling F. 2002. 
PCDD, PCDF, PCB and Thiamine in Baltic herring (Clupea harengus L.) and sprat [Sprattus sprattus 
(L.)] as a Background to the M74 Syndrome of Baltic Salmon (Salmo salar L.). Journal of Marine 
Science 59, 480-496. 

6 Bayarri, S., Baldassarri, L.T., Iacovella, N., Ferrara, F., di Domenico, A. 2001. PCDDs, PCDFs, PCBs and 
DDE in Edible Marine Species from the Adriatic Sea. Chemosphere 43, 601-610. 

7 Focant, J-F., Eppe, G., Pirrard, C., Massart, A-C., André, J-E., De Pauw, E. 2002. Levels and Congener 
Distributions of PCDDs, PCDFs and non-ortho PCBs in Belgian Foodstuffs: Assessment of Dietary 
Intake. Chemosphere 48, 167-179. 

8 Guruge, K.S., Tanabe S. 2004. Polychlorinated Dibenzo-p-dioxins, Dibenzofurans and Dioxin-like 
Biphenyls in Biota from Sri Lankan Coast. Marine Pollution Bulletin 48, 986-1008. 

9 Hashimoto, S., Horiguchi, T., Shibata, Y., Morita, M. 1999. Polychlorinated Dibenzo-p-dioxins and 
Dibenzofurans in Invertebrate Animals from a Rural Beach in Japan. Chemosphere 39, 15, 2661-2669. 

10 Im, S.H., Strause, K.D., Giesy, J.P., Chang, Y.S., Matsuda, M., Wakimoto, T. 2004. Concentrations and 
Accumulation Profiles of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Aquatic Tissues, and 
Ambient Air from South Korea. Chemosphere 55, 1293-1302. 

11 Anonymous. 2006. National Institute of Nutrition and Seafood Research Seafood Data. [Available at: 
www.nifes.no.  Accessed: February 20 2006]. 

12 Corsolini, S., Kannan, K., Focardi, S., Giesy, J.P. 2002. Polychloronaphthalenes and Other Dioxin-like 
Compounds in Arctic and Antarctic Marine Food Webs. Environmental Science and Technology 36, 16, 
3490-3496. 

13 Abarnou, A., Fraisse, D. 2002. Dioxins and Dioxin-like PCBs in Mussels and Fishes from the French 
Coastal Waters. Organohalogen Compounds 56, 469-472. 

14 Shelepchikov, A.A., Kluyev, N.A., Shenderyuk, V.V., Baholdina, L.P., Brodsky, S.S. 2003.  Contamination 
of Russian Baltic Fish by PCDD/F. Organohalogen Compounds 62, 152-156. 

15 Anonymous. 2004. Alaska Department of Environmental Conservation Fish Monitoring Program: Analysis 
of Organic Contaminants. [Available at: 
www.dec.state.ak.us/eh/docs/vet/FMP%20Organic%20data%20release3.pdf. Accessed: February 16 
2006]. 

16 Haldorsen, A-K.L., Lie, Ø. 1999. An Overview of Dioxins in Norwegian Fish and Marine Products.  
[Available at: www.aquapoland.pro.onet.pl/Archiwum/raport.doc. Accessed: February 15 2006]. 

17 Karl, H., Ruoff, U., Blüthgen, A. 2002. Levels of Dioxins in Fish and Fishery Products on the German 
Market. Chemosphere 49, 765-773. 

18 Barra, R., Colombo, J.C., Egurun, G., Gamboa, N., Jardim, W.F.,Mendoza, G. 2005. Persistent Organic 
Pollutants (POPs) in Eastern and Western South American Countries. Archives of Environmental 
Contamination and Toxicology 185, 1-33. 

19 Jones, P.D., Hannah, D.J., Buckland, S.J., van Maanen, T., Leathem, S.V., Dawson, S., Slooten, E., van 
Helden, A., Donoghue, M. 1999.Polychlorinated Dibenzo-p-dioxins, Dibenzofurans and Polychlorinated 
Biphenyls in New Zealand Cetaceans.  Journal of Cetacean Research and Management. Special Issue 
1, 157-167. 
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20 Symons, R.K., Burniston, D., Jaber, R., Piro, N., Trout, M., Yates, A., Gales, R., Terauds, A., Pemberton, 
D., Robertson, D. 2003. Southern Hemisphere Cetaceans: A Study of the POPs PCDDs/PCDFs and 
Dioxin-like PCBs in Stranded Animals from the Tasmanian Coast. Organohalogen Compounds 62, 257-
260.  

21 Ruchel, M. 2001. Toxic Dolphins: A Greenpeace Investigation of Persistent Organic Pollutants (POPs) in 
South Australian Bottlenose Dolphins. Greenpeace Australia, Sydney, 23 pp. 

22 Oehme, M., Schlabach, M., Hummert, K., Luckas, B., Nordøy, E.S. 1995. Determination of Levels of 
Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Biphenyls and Pesticides in Harp Seals from the 
Greenland Sea. The Science of the Total Environment 162, 75-91. 

23 Haynes, D., Müller, J.F., McLachlan, M.S. 1999. Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in 
Great Barrier Reef (Australia) Dugongs (Dugong dugon). Chemosphere 38, 2, 255-262. 

24 Kumar, K.S., Yamamuro, M., Pitaksintorn, S., Masunaga, S. 2003. Dioxins/Furans and Polychlorinated 
Biphenyls (PCBs) in Dugongs from the Thailand Coast. Bulletin of Environmental Contamination and 
Toxicology 70, 198-204. 

25 Addison, R.F., Ikonomou, M.G., Smith, T.G. 2005. PCDD/F and PCB in Harbour Seal (Phoca vitulina) from 
British Columbia: Response to Exposure to Pulp Mill Effluents. Marine Environmental Research 59, 
165-176. 

26 Addison, R.F., Ikonomou, M.G., Stobo, W.T. 1999. Polychlorinated Dibenzo-p-dioxins and furans and 
Non-ortho- and Mono-ortho-chlorine Substituted Polychlorinated Biphenyls in Grey Seals (Halichoerus 
grypus) from Sable Island, Nova Scotia, in 1995. Marine Environmental Research 47, 225-240.  

27 Addison, R.F., Ikonomou, M.G., Fernandez, M.P. and Smith, T.G. 2005. PCDD/F and PCB Concentrations 
in Arctic Ringed Seals (Phoca hispida) Have Not Changed between 1981 and 2000. Science of the 
Total Environment 351-352, 301-311. 

28 Anonymous. 1999. Survey on the State of Dioxin Accumulation in Wildlife: Findings of the Fiscal 1999 
Survey. Environmental Agency of Japan. [Available at: www.env.go.jp/en/chemi/dioxins/wildlife.pdf. 
Accessed: February 12 2006]. 
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ABSTRACT 

Within the preceding chapters in this report it has been shown that ‘forage’ fish fisheries impact marine 
ecosystems, as well as human food security from a nutritional and food safety perspective. Also they are 
closely related to the development of aquaculture and other intensive food production systems. In part, 
these impacts and uses are misunderstood, notably due to the myth that forage fish are unsuitable for 
human consumption. In addition, the role of these fisheries in trophic transfers and in intensive food 
production systems is generally not well understood or appreciated. Nevertheless, there is considerable 
scope for policy-makers to change the current directions in managing these fisheries and their role in food 
security as well as economic development. There is also a greater role for industry to play in finding the 
balance between these fisheries contributing to poverty alleviation and sustaining intensive animal food 
production systems, especially aquaculture. This report highlights these respective roles. 
 

INTRODUCTION 

The ‘Forage Fish Study’, conducted in 2005-2006 by the Sea Around Us Project, and documented in this 
report, aimed to improve our understanding of the role of forage fish in marine ecosystems, highlight their 
importance to human well-being and their role in intensive food production including aquaculture, and 
make management recommendations for their sustainable use. Forage fisheries target small schooling 
pelagic fish that are easy to catch in large numbers and are inexpensive (Chapter 1). The fisheries which 
target forage fish are now concentrated in three areas of the world, the west coast of South America, which 
sustains the world’s largest fishery for small pelagics, Northern Europe and the United States (Western 
Atlantic  and Alaska). These fisheries are not only important to human well-being (Chapter 2), they are 
also important food to marine mammals and seabirds (Figure 1 and Chapter 3). Our studies on the overlap 
of forage fish and marine mammals and seabirds show, however, that we impact those animals far more 
than they impact us. Modeling of atmospheric dioxin (Chapter 5) and subsequent uptake in marine 
ecosystems (Chapter 6) in this study suggests that dioxin levels in forage fish caught in Europe are higher 
than in other major fishing areas. Processing these fish into fishmeal and fish oil further concentrates 
these pollutants. The trade of contaminated fish products (Chapter 4) distributes the dioxins further 
around the world and introduces them into the human food system. 

 
Throughout the centuries, humans in all areas of the world consumed small pelagic fish, and in many 
places in the world they are still very popular (Chapter 2). The combination of low fishing costs, especially 
for fuel (Chapter 1), cheap market prices and the superior nutritional content of these fish also make them 
an important input of animal feeds for poultry and pigs, and more recently aquafeeds. Small pelagic fish 
also play an important role in the future of high-value aquaculture (Chapter 4). This competition is an 
emerging issue, as the results of this study show the increasing use of higher trophic level fish, which are 
consumed by humans in fishmeal (Chapter 4). The concentration of fishing in these three areas of the 
world also means that these fish and the derived fishmeal and fish oil are widely traded on the 

                                                
10 Cite as: Alder, J. 2006. Synthesis: On the multiple uses of forage fishes, p. 103-110. In: Alder, J., Pauly, D. (eds.) On the multiple 
uses of forage fish: from ecosystems to markets. Fisheries Centre Research Reports 14(3). Fisheries Centre, University of British 
Columbia [ISSN 1198-6727]. 
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international market. The economics of these fisheries are subject to international factors such as the price 
of soymeal and are well beyond the control of fishers and producers (Chapter 4). Who benefits from this 
trade, however, is not well known.  

 

 
 

Figure 1. Fate of forage fish with the arrows representing flows described in the different chapters of this report 
 
Fish products from the North Sea are particularly high in dioxin (Chapters 5 and 6) and other pollutants, 
and therefore trade on the global market results in the transportation of dioxins to other areas of the world 
(Chapter 4). When feeds and oils with high concentrations of these pollutants are fed to farmed animals, 
pollutants enter the human food chain and represent a risk for consumers, as seen in the controversy 
surrounding dioxin in farmed salmon. Several countries, developing and developed, are farming fish, 
especially high-value fish that are often carnivorous and require large inputs of fishmeal and fish oil. The 
aquafeed and aquaculture industries have made considerable improvements in the efficient use of 
fishmeal and fish oil and are working towards alternatives as well as ways to extract dioxin out of fish oil. 
Until alternatives that are as inexpensive as or cheaper than fishmeal and oil are found, the need to 
balance food security and economic development will remain. In the meantime, policy- makers need to 
consider the implications of current and future management of these fisheries. Below is a discussion of the 
implications of the findings of this study, with recommendations for management. 

IMPLICATIONS 

Fisheries management 

Forage fisheries are currently concentrated in three areas of the world and there is a general consensus 
that most stocks are fished at their biological limits, with limited scope for expansion. One species in 
particular, Blue whiting, is fished outside of an agreed management plan and there is concern about its 
sustainability. The forage fisheries have also exhibited highly variable catches in part due to their 
sensitivity to changing oceanographic conditions, but also in part to depleting species and finding 
replacement species, as seen in Northern Europe (Chapter 1 and Figure 2). 
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Figure 2. Trends in landing of fish destined for reduction 1976 to 2001 (Watson et al., 2006; Chapter 1). 
 
Management needs to consider the impacts of fishing on marine ecosystems and one mechanism is 
through certification programs such as that managed by the Marine Stewardship Council (MSC). The 
International Fishmeal and Fish oil Organization has already initiated contact to assess the feasibility of 
certification. Similarly purveyors of farmed fish are beginning to demand sustainably farmed fish and they 
are concerned with the issue of forage fish sustainability.  

 
The industry will face significant challenges in meeting MSC certification since information on the effects 
of fishing is limited for most fisheries. This is seen in FAO’s State of Fisheries and Aquaculture reports 
where the exploitation status of forage fish species is often reported on large geographic scales, masking 
the status of small and locally important stocks (Chapter 1). 

 
The aquafeed sector still has scope to reduce pressure on landings of forage fish by continuing to improve 
the efficiency of feed and feeding regimes as well as developing alternatives to fishmeal and fish. The 
aquaculture sector can also continue to improve feeding efficiencies which ultimately use less fishmeal.  

 
Managers and policy- makers should take a precautionary approach to managing forage fish fisheries 
because of the influence of oceanographic conditions and the unknown consequences of climate change 
and associated warming sea temperatures. Previous oceanographic events such as El Niño can have a 
significant impact on landings as well as impacting the prey populations for many marine mammals and 
seabirds (Chapter 1).  

Marine ecosystems 

Small pelagic fish, which make up the bulk of forage fisheries, have a very important role in trophic 
transfer and yet the impact of fishing forage fish to their maximum biological limits is not well understood 
(Chapter 1). The corollary of how fisheries impact seabird and marine mammals is also poorly understood. 
A recent study of the North Sea highlighted the lack of information to assess the effects of industrial 
fisheries on predators, seabirds and marine mammals (Chapter 1). Studies of the overlap of fisheries with 
marine mammals and seabirds (Chapter 3) have dispelled the myth that these animals consume fish that 
would be eaten by humans or compete with industrial users.  

 
An improved understanding of the role of forage fish in marine ecosystems will enable policy makers to 
use an ecosystem-based approach to managing these fisheries ensuring that there is sufficient prey for 
other components of the ecosystem. This is especially important if sea temperatures rise as predicted since 
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a well-managed ecosystem has more potential to buffer the predicted impacts of climate change and 
continue to contribute to human well being. 

 
Recent concern over the level of pollutants such as dioxins and mercury in wild capture and farmed fish 
has also raised concerns about the quality of the marine ecosystems. This concern extends to marine 
systems that support forage fish because they are a significant component of aquafeeds. Atmospheric 
modeling of dioxin identified marine areas where the toxin has the highest concentrations globally and is 
available to marine food webs (Chapter 5). Overlaying these results with areas of major forage fisheries 
identified the northeast Atlantic as a potential hot spot for fish with high dioxin concentrations (Figure 3 
and Chapters 5, 6).  

 
a) 

b)  

 

Figure 3. Global distribution of modeled dioxin deposition, based on the two seasonal, 10- year average wind field 
patterns combined, showing spatial distribution (a) on land, and (b) in the ocean. Note the difference in scale (Zeller et 
al., 2006; Chapter 5).  
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Climate Change 

The impact of climate change on forage fish stock is highly uncertain given the uncertainty associated with 
changes in ocean currents, upwellings, mixing of water masses, water salinity, oxygen levels, currents, ice 
formation and melting, etc. (Arnason, 2006). These hydrographic changes in turn affect habitats and 
ultimately the distribution and abundance of fish stocks. The intensity of these changes is unknown but 
there is consensus that it will vary from area to area depending on a multitude of factors including latitude 
and depth. The Arctic Climate Assessment Study (ACIA, 2003) found that the predicted global warming 
would expand the habitat range and thus benefit Atlanto-Scandian herring and Blue whiting but have the 
opposite effect for Capelin. 
 
The certainty of climate change impacting on the world’s oceans combined with the uncertainty in 
understanding its impacts on fish populations highlights the need to better understand the role of forage 
fish in marine systems.  An ecosystem-based approach to management and the exploration of policy 
options that incorporate adaptation to climate in managing these fish should be taken now rather than 
waiting until the impacts of climate change are more evident. The kind of management initiatives that 
should be included to facilitate adaptation to climate are just beginning to be explored (Hannesson et al., 
2006). 

Intensive food production 

Fishmeal and fish oil, which are derived from forage fish, are important inputs into the intensive 
production of animals, primarily chickens, pigs and fish. There is a consistent and strong demand for 
fishmeal and fish oil because of their superior performance and low cost, resulting in the products being 
traded globally (Chapter 4).  Disruptions to forage fish landings will ultimately affect the production of a 
range of food products. Although soymeal can substitute for fishmeal, the risk of diseases and lower 
growth rates is higher. Animal production is more price-sensitive than aquaculture and thus when prices 
increase producers will consume more soymeal. The aquaculture sector can substitute soymeal for 
fishmeal but no substitute for fish oil is yet available. As intensive animal production expands the demand 
for fishmeal and fish oil will also increase (Chapter 4) and can only be met by exploitation of stocks that 
are destined for human consumption, better utilization of bycatch and development of alternatives for 
fishmeal and fish oil. Otherwise these industries, especially aquaculture, will be constrained. 

Food security and safety 

The sensitivity of forage fish to oceanographic changes also highlights the urgency to better understand 
how their fisheries will respond to climate change. In terms of food security, forage fish are used to meet 
shortfalls in demand for cheap protein, as seen for example in Ghana. Disruptions to landings of small 
pelagics consumed by humans would directly impact on the food security of many developing countries 
(Chapters 1 and 2). All findings on the use of fishmeal and fish oil note that both commodities are 
important inputs into intensive animal production especially chickens and pigs, and more recently 
aquaculture. Thus declines in landings would impact the price of inputs into aquaculture and ultimately 
the affordability of protein in many areas of the world (Chapter 1 and 4). 

 
The demand for fishmeal and fish oil to sustain growth in the intensive food production sector can impact 
food security. An analysis of changes in the trophic level of fish destined for reduction revealed the index 
has been increasing over the last 20 years; this suggests that fish earlier destined for human consumption 
are being diverted to producing fishmeal.  

 
Food safety may be compromised when fishmeal and fish oil originate from areas where there are high 
dioxin levels. The North Atlantic marine waters are subjected to high deposition rates of dioxins (Chapter 
5) and numerous studies have highlighted the high concentrations of dioxins in fishmeal and fish oil from 
this region (Figure 4 and Chapter 6). When the fishmeal and fish oil are used in aquafeeds, dioxins are 
introduced in the human food system and can pose a risk especially to children and pregnant women. This 
risk is global since fishmeal is traded globally. 
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Figure 4. Predicted relative dioxin concentrations for small pelagics. Scale is from low to high, (white or light blue) to 
(red/dark). (From Christensen and Booth, 2006; Chapter 6) 

Plausible Futures 

Forage fisheries products, fishmeal and fish oil, are highly traded globally and their future will depend on a 
number of factors including the development of aquaculture, the trends in soy production, the 
development of alternatives that are just as effective as fish oil, and climate change. The future of forage 
fish in the face of climate change is filled with uncertainty since it is unclear how oceans will respond to 
changes in upwellings, currents and sea temperatures. There is no doubt that forage fish will be impacted. 
However, the nature and severity of these impacts is unclear and needs further research. 
 
In a future where aquaculture, especially for carnivorous fish, continues to expand without finding 
alternative sources of feeds, the price of fishmeal and fish oil will likely rise and the meals and oils will be 
increasingly consumed in the aquaculture sector at the expense of first the poultry sector and second the 
pig sector. The increasing price of fishmeal and fish oil will ultimately increase production costs with 
consumers paying more for farmed fish, and will affect the food security of developing countries by pricing 
forage fish and farmed fish out of their price range. 
 
In a world of expanding aquaculture, price-competitive alternatives to fishmeal and fish oil will be found, 
with the likely result that the forage fish fisheries will continue at current levels, but the price of fishmeal 
and fish oil may decrease since demand will be lower. However, if fuel costs continue to rise, some fleets 
may fold so that only the most economically efficient vessels will continue to operate. In such a scenario, it 
is possible that increased use will be made of fishmeal and fish oil in higher-value products destined for 
human consumption. 
 
However, if production of soymeal slows down or stalls, the price of fishmeal and fish oil will rise. There 
will be considerable pressure to find new sources of fishmeal as well as initiatives to improve the food 
conversion ratios where it is used. Such a scenario has significant implications for food security since high 
prices could see low-value fish normally destined for developing countries being diverted to reduction 
plants instead. This scenario also has implications for the use of bycatch, with an even greater incentive to 
use it in the aquaculture sector either as direct feed or as inputs to fishmeal and fish oil. 

CONCLUSIONS 

Forage fisheries are globally the largest fisheries, and they are critical to human well-being through direct 
and indirect uses of fish caught. Although these fisheries are found in three major areas of the world’s 
oceans, their importance is global since they are a significant source of cheap protein for developing 
countries, an important input into animal food production and a key prey species for marine mammals 
and seabirds. Management of these fisheries is still single-species-based for many of the stock 
assessments; the highly variable annual catches and sensitivity of forage fisheries suggest that a 
precautionary approach to management using ecosystem-based management principles must be employed 
if a balance between meeting human food security, food production systems and meeting the ecological 
needs of the other animals in marine ecosystems is to be achieved. 
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