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Reconstructing marine fisheries catch data1  
Dirk Zeller, and Daniel Pauly  

  

Nowadays, as fisheries need to be managed in the context of the ecosystems in which they are 

embedded (Pikitch et al. 2004), less than full accounting for all withdrawals from marine 

ecosystems is insufficient. Therefore, the Sea Around Us strives to provide time-series of all 

marine fisheries catches since 1950, the first year that the Food and Agriculture Organization of 

the United Nations (FAO) produced its annual compendium of global fisheries statistics.  

What is covered here are catches in the waters within the Exclusive Economic Zones (EEZ,  

Figure 1) that countries have claimed since they could do this under the United Nations 

Convention on the Law of the Sea (UNCLOS), or which they could claim under UNCLOS rules, 

but have not (such as many countries around the Mediterranean). The delineations provided by 

the Flanders’ Marine Institute (VLIZ, see www.vliz.be) were used for our definitions of EEZs. 

Countries that have not formally claimed an EEZ were assigned EEZ-equivalent areas based on 

the basic principles of EEZs as outlined in UNCLOS (i.e., 200 nm and/or mid-line rules).   

Note that we:  

a) Treat disputed zones (i.e., EEZ areas claimed by more than one country) as being ‘owned’ 

by each claimant with respect to their fisheries catches, including the extravagant claims 

by one single country on the large swaths of the South China Sea; and  

b) Treat EEZ areas prior to each country’s year of EEZ declaration as ‘EEZ-equivalent 

waters’ (with open access to all fishing countries during that time).  

  
Disclaimer: Maritime limits and boundaries depicted on Sea Around Us maps are not to be considered as an 

authority on the delimitation of international maritime boundaries. These maps are drawn on the basis of the best 

information available to us. Where no maritime boundary has been agreed, theoretical equidistance lines have been 

constructed. Where a boundary is in dispute, we attempt to show the claims of the respective parties where these are 

known to us and show areas of overlapping claims. In areas where a maritime boundary has yet to be agreed, it 

should be emphasized that our maps are not to be taken as the endorsement of one claim over another.  

  

The United Nations Convention on the Law of the Sea (UNCLOS), initiated in the 1960s, 

established a framework that permitted countries to define their claims over the ocean areas, and 

provided agreed upon definitions for territorial seas (now defined as 12 nm), contiguous zones 

(24 nm, for prevention of infringements of customs, fiscal, immigration and sanitary regulations) 

as well as 200 nm Exclusive Economic Zones (EEZ), which now cover most shelf areas down to 

the continental shelf margins at which the slope of the continental shelf merges with the deep 

ocean seafloor. Most countries declared EEZs right after the adoption of UNCLOS as 

international law in 1982. Within its EEZ, the country has the sovereign right to explore and 

                                                 
1 Adapted from: Zeller, D. and D. Pauly. 2016. Marine fisheries catch reconstruction: definitions, sources, methodology and challenges, In: Pauly 

D and Zeller D (eds.) Global Atlas of Marine Fisheries: Ecosystem Impacts and Analysis. Island Press, Washington, D.C.  

http://www.vliz.be/
http://www.vliz.be/
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exploit, conserve and manage living and non-living resources in the water column and on the 

seafloor, as defined by Part V of the Law of the Sea.  

The Law of the Sea also makes allowances, through the Commission on the Limits of the 

Continental Shelf, for countries to claim extended jurisdiction over shelf areas beyond 200 nm, if 

they can demonstrate that their continental shelf extends beyond the established 200 nm EEZ. 

National claims for EEZs and extended jurisdiction may overlap, creating areas of disputed 

ownership and jurisdiction. Settlements through boundary agreements may take many years to 

develop and are complex, resulting in numerous disputed areas and claimed boundaries.  

The present text, therefore deals with catches made in about 40% of the world ocean space (i.e., 

EEZs), while the catches (mainly of tuna and other large pelagic fishes) made in the high seas, 

which cover the remaining 60%, are dealt with in Section #2.  

Catches that are not associated with tuna and other large pelagic fishes, but taken by fishing 

countries outside their domestic waters are derived as described for ‘Layer 2’ in Section #4.  

  

  

Figure 1. The extent and delimitation of countries’ Exclusive Economic Zones (EEZs), as declared by individual 

countries, or as defined by the Sea Around Us based on the fundamental principles outlined in UNCLOS (i.e., 200 

nautical miles or mid-line rules), and the FAO statistical areas by which global catch statistics are reported. Note that 

for several FAO areas, some data exist by sub-areas as provided through regional organizations (e.g., ICES for FAO 

area 27). The Sea Around Us makes use of these spatially refined data to improve the spatial allocation of catch data.  

  

The country-by-country fisheries catch data reconstructions are based on the rational in Pauly 

(1998), as first implemented by Zeller et al. (2007). The former contribution asserted (i) there is 

no fishery with ‘no data’ because fisheries, as social activities throw a shadow unto the other 

sectors of the economy in which they are embedded, and (ii) it is always worse to put a value of  
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‘zero’ for the catch of a poorly documented fishery than to estimate its catch, even roughly, 

because subsequent users of one’s statistics will interpret the zeroes as ‘no catches’, rather than 

‘catches unknown’.   

Zeller et al. (2007) developed a six-step approach for implementing these concepts, as follows:   

1. Identification, sourcing and comparison of baseline reported catch times series,  

i.e., a) FAO (or other international reporting entities) reported landings data by 

FAO statistical areas, taxon and year; and b) national data series by area, taxon 

and year;  

2. Identification of sectors (e.g., subsistence, recreational), time periods, species, 

gears etc., not covered by (1), i.e., missing data components. This is conducted via 

extensive literature searches and consultations with local experts;   

3. Sourcing of available alternative information sources on missing data identified in 

(2), via extensive searches of the literature (peer-reviewed and grey, both online 

and in hard copies) and consultations with local experts. Information sources 

include social science studies (anthropology, economics, etc.), reports, colonial 

archives, data sets and expert knowledge;   

4. Development of data ‘anchor points’ in time for each missing data component, and 

expansion of anchor point data to country-wide catch estimates;   

5. Interpolation for time periods between data anchor points, either linearly or 

assumption-based for commercial fisheries, and generally via per capita (or 

perfisher) catch rates for non-commercial sectors; and   

6. Estimation of total catch times series, combining reported catches (1) and 

interpolated, country-wide expanded missing data series (5).  

Since these 6 points were originally proposed, a 7th point has come to the fore which cannot be 

ignored:  

7. Quantifying the uncertainty associated with each reconstruction.   

Here, we first expand on each of these seven reconstruction steps (Figure 2), based on the 

experience accumulated during the decade-long reconstruction process, when completing or 

guiding the reconstructions:   

  

Step 1: Identification, sourcing and comparison of existing, reported catch times series.  

Implicit in this first step is that the spatial entity be identified and named that is to be reported on 

(e.g., EEZ of Germany in the Baltic Sea).   

For most countries, the baseline data are the statistics reported by member countries to FAO. 

Whenever available, we also use data reported nationally for a first-order comparison with FAO 

data, which often assist in identifying catches likely taken in areas beyond national jurisdiction, 

i.e., either in EEZs of other countries or in high seas waters. The reason for this is that many 

national datasets do not necessarily include catches by national distant-water fleets fishing and/or 

landing catches elsewhere. As FAO assembles and harmonizes data from various sources, this 
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first-order comparison enabled catches ‘taken elsewhere’ to be identified and separated from truly 

domestic (national EEZ) fisheries (see Section #4 for the spatial layering of reconstructed 

datasets).   

For some countries, e.g., those resulting from the breakup of the USSR, and Yugoslavia, this 

involved sourcing data that the now-newly emerged countries would have reported, had these 

countries already existed independently in 1950. In other words, we treat all countries recognized 

in 2010 by the international community (or acting like independent entities with regards to 

fisheries, e.g., the divided island of Cyprus; Ulman et al. 2014) as having existed from 1950- 

2010. This was necessary, given our emphasis on ‘places’, i.e., on time-series of catches taken 

from specific ecosystems. This also applies to islands and other territories, many of which were 

colonies, and which have changed status and borders since 1950.   

  

  
Figure 2. Conceptual representation of the 7-step catch reconstruction approach, as initially described 

in Zeller et al. (2007) and modified here.   

  

For several countries, the baseline was provided by other international bodies. In the case of 

countries in Europe, the baseline data generally originated from the International Council for the 

Exploration of the Sea (ICES), which maintains fisheries statistics by smaller statistical areas, as 

required given the Common Fisheries Policy of the EU, which largely ignores EEZs. A similar 

area is the Antarctic continent and surrounding islands, whose fisheries are managed by the 

Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), where 

catches (including discards, a unique feature of CCAMLR) are available by relatively small 

statistical areas (see e.g., Ainley and Pauly 2013).  

When FAO data are used, care is taken to maintain their assignment to different FAO statistical 

areas for each country (Figure 1). The point here is that, because they are very broad, the FAO 

statistical areas often distinguish between strongly different ecosystems, for example the 
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Caribbean Sea from the coast of the Eastern Central Pacific in the case of Panama, Costa Rica, 

Nicaragua, Honduras and Guatemala.  

  

Step 2:  Identification of missing sectors, taxa and gear.    

This step is one where the contribution of local co-authors and experts is crucial. Four fisheries 

sectors potentially occur in the marine fisheries of a given coastal country, with the distinction 

between large-scale and small-scale being the most important point (Pauly and Charles 2015):  

Industrial sector: consisting of relatively large motorized vessels, requiring large sums for their 

construction, maintenance and operation, either domestically, in the waters of other countries 

and/or the high seas, and landing a catch that is overwhelmingly sold commercially (as opposed 

to being consumed and/or given away by the crew). All gears that are dragged or towed across 

the seafloor or intensively through the water column using engine power (e.g., bottom- and 

midwater trawls), no matter the size of the vessel deploying the gear are here considered 

industrial, following Martín (2012), as are large pirogues (e.g., from Senegal; Belhabib et al. 

2014) and ‘baby trawlers’ (in the Philippines; Palomares and Pauly 2014) capable of long-

distance fishing,  

i.e., in the EEZ of neighboring countries. Thus, the industrial sector can also be considered 

largescale and commercial in nature;  

Artisanal sector: consisting of small-scale (hand lines, gillnets etc.) and fixed gears (weirs, traps, 

etc.) whose catch is predominantly sold commercially (notwithstanding a small fraction of this 

catch being consumed or given away by the crew). Thus, our definition of artisanal fisheries 

relies also on adjacency: they are assumed to operate only in domestic waters (i.e., in their 

country’s EEZ). Within their EEZ, they are further limited to a coastal area to a maximum of 50 

km from the coast or to 200 m depth, whichever comes first. This is the area what we call the 

Inshore Fishing Area (IFA; see Chuenpagdee et al. 2006). Note that the definition of an IFA 

assumes the existence of a small-scale fishery, and thus unpopulated islands, although they may 

have fisheries in their EEZ (which by our definition are industrial), have no IFA. The artisanal 

sector is thus defined as small-scale and commercial. The other small-scale sectors we recognize 

are subsistence and recreational fisheries, which overlap in many countries.  

Subsistence sector: consisting of fisheries that often are conducted by women and/or 

noncommercial fishers for consumption by one’s family. However, we also count as subsistence 

catch the fraction of the catch of mainly artisanal boats that is given away to the crews’ families 

or the local community (as occurs, e.g., in the Red Sea fisheries; see Tesfamichael et al. 2012). 

The subsistence sector is thus defined as small-scale and non-commercial.  

Recreational sector: consisting of fisheries conducted mainly for pleasure, although a fraction of 

the catch may end up being sold or consumed by the recreational fishers and their families and 

friends (Cisneros-Montemayor and Sumaila 2010). Unless data exist on catch-and-release 

mortalities in a given country, catch from recreational catch-and-release fisheries are not 

estimated. Often, fisheries that started out as subsistence (e.g., in the 1950s) changed 

progressively into recreational fisheries as economic development increased in a country and its 

cash economy grew. The recreational sector is thus defined as small-scale and non-commercial.  
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Finally, for all countries and territories, we account for two catch types: Landings (i.e., catch that 

is retained on-board and landed) and discards, which mainly originate from industrial fisheries. 

Discarded fish and invertebrates are generally assumed to be dead, except for the U.S. fisheries 

where the fraction of fish and invertebrates reportedly surviving is generally available on a per 

species basis (McCrea-Strub 2015). Due to a distinct lack of global coverage of information, we 

do not account for so-called under-water discards, or net-mortality of fishing gears (e.g., 

Rahikainen et al. 2004). We also do not address mortality caused by ghost-fishing of abandoned 

or lost fishing gear (Bullimore et al. 2001; He 2006; Renchen et al. 2010), even though it can be 

substantial, e.g., about 4% of trap-caught crabs worldwide (Poon 2005).   

Furthermore, we exclude from consideration all catches of marine mammals, reptiles, corals, 

sponges and marine plants (the bulk of the plant material is not primarily used for human 

consumption, but rather for cosmetic or pharmaceutical use). In addition, we do not estimate 

catches made for the aquarium trade, which can be substantial in some areas in terms of number 

of individuals, but relatively small in overall tonnage, as most aquarium fish are small or juvenile 

specimens (Rhyne et al. 2012). Note that at least one regional organization (the Secretariat of the 

Pacific Community, SPC) is coordinating the tracking of catches and exports of Pacific island 

countries involved in this trade (see, e.g., Wabnitz and Nahacky 2014). Finally, we do not 

explicitly address catches destined for the Live Reef Fish Trade (LRFT; see Warren-Rhodes et al. 

2003), although, given that these fisheries are often part of normal commercial operations, the 

catch tonnages of the LRFT is assumed to be addressed in our estimates of commercial catches. 

Our subsequent estimates of landed value of catches using the global ex-vessel fish price 

database (see Section #6) will therefore undervalue the catch of any taxa destined directly to the 

LRFT. All the data omissions indicated above are additional factors why our reconstructed total 

catches are a conservative metric of the impacts of fishing on the world’s marine ecosystems.  

For any country or territory we check whether catches originating from the above fishing sectors 

are included in the reported baseline of catch data, notably by examining their taxonomic 

composition, and any metadata, which were particularly detailed in the early decades of the FAO 

‘Yearbooks’ (e.g., FAO 1978).   

The absence of a taxon known to be caught in a country or territory from the baseline data (e.g., 

cockles gleaned by women on the shore of an estuary) can also be used to identify a fishery that 

has been overlooked in the official data collection scheme, as can the absence of reef fishes in the 

coastal data of a Pacific Island state (Zeller et al. 2015). Note, however, that, to avoid double 

counting, tuna and other large pelagic fishes, unless known to be caught by a local small-scale 

fishery (and thus not always reported to a Regional Fisheries Management Organization or 

RFMO), are not included in this reconstruction step (industrial large pelagic catches are 

reconstructed using a global approach, see Section #2).  

Finally, if gears are identified in national data, but catch data from a gear known to exist in a 

given country are not included, then it can be assumed that its catch has been missed, as 

documented by Al-Abdulrazzak and Pauly (2013) for weirs in the Persian Gulf.  
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Step 3: Sourcing of available alternative information sources for missing data. The major initial 

source of information for catch reconstructions is governments’ (and specifically their 

Department of Fisheries or equivalent agency) websites and publications, both online and in hard 

copies. Contrary to what could be expected, it is often not the agency responsible for fisheries 

which supplies the catch statistics to FAO, but other agencies, e.g., some statistical office or 

agency, with the result that much of the granularity of the original data (i.e., catch by sector, by 

species or by gear) may be lost even before it reaches Rome. Furthermore, the data request form 

sent by FAO each year to each country does not explicitly encourage improvements or changes in 

taxonomic composition, as the form contains the country’s previous years’ data in the same 

composition as submitted in earlier years, and requests the most recent year’s data. This 

encourages the pooling of detailed data at the national level into the taxonomic categories 

inherited through earlier (often decades old) FAO reporting schemes (see e.g., Bermuda, 

Luckhurst et al. 2003). Thus, by getting back to the original data, much of the original granularity 

can be regained during reconstructions (e.g., Bermuda reconstruction, Teh et al. 2014). A second 

major source of information on national catches are international research organizations such as 

FAO, ICES, or SPC, or a RFMO such as NAFO, or CCAMLR (CullisSuzuki and Pauly 2010), or 

current or past regional fisheries development and/or management projects (many of them 

launched and supported by FAO), such as the BOBLME Project. All these organizations and 

projects issue reports and publications describing - sometimes in considerable details - the 

fisheries of their member countries. Another source of information is obviously the academic 

literature, now widely accessible through Google Scholar.   

A good source of information for the earlier decades (especially the 1950s and 1960s) for 

countries that formerly were part of colonial empires (especially British or French) are the 

colonial archives in London (British Colonial Office) and the ‘Archives Nationales d'Outre-Mer’, 

in Aix-en-Provence, and the publications of O.R.S.TO.M., for the former French colonies. A 

further good source of information and data are also non-fisheries sources, including household- 

and/or nutritional-surveys, which can be of great use for estimating unreported subsistence 

catches. We find the Aquatic Sciences and Fisheries Abstracts (ASFA) and the University of 

British Columbia library services (and especially its experienced librarians) and its Interlibrary 

Exchange invaluable for tracking and acquiring such older documents.  

Our global network of local collaborators is also crucial in this respect, as they have access to key 

data sets, publications and local knowledge not available elsewhere, often in languages other than 

English.  

The reconstructions themselves should be consulted for fine-grained information on specific 

countries or territories, all of which are available online on each EEZ webpage. Every 

reconstruction we undertake is thoroughly documented and published, either in the peer-reviewed 

scientific literature, or as detailed technical reports in the publicly accessible and search-engine 

indexed Fisheries Centre Research Reports series, or the Fisheries Centre Working Paper series, 

or as reports issued by regional organizations (e.g., BOBLME 2011).   

  

Step 4: Development and expansion of ‘anchor points’.  
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‘Anchor points’ are catch estimates usually pertaining to a single year and sector, and often to an 

area not exactly matching the limits of the EEZ or IFA in question. Thus, an anchor point 

pertaining to a fraction of the coastline of a given country may need to be expanded to the 

country as a whole, using fisher or population density, or relative IFA or shelf area as raising 

factor, as appropriate given the local condition. In all cases, we are aware that case studies 

underlying or providing the anchor point data may had a case-selection bias (e.g., representing an 

exceptionally good area or community for study, compared to other areas in the same country), 

and thus we use any raising factors very conservatively. Hence, in many instances, we may 

actually be underestimating any raised catches.  

  

Step 5: Interpolation for time periods between anchor points.   

Fishing, as a social activity involving multiple actors are very difficult to govern; particularly, 

fishing effort is difficult to reduce, at least in the short term. Thus, if anchor points are available 

for years separated by multi-year intervals, it will be usually more reasonable to assume that the 

underlying fishing activity went on in the intervening years with no data. Strangely enough, this  

‘continuity’ assumption we take as default is something that some colleagues are reluctant to 

make, which is the reason why the catches of, e.g., small-scale fisheries monitored intermittingly 

often have jagged time-series of reported catches. Exceptions to such continuity assumptions are 

obvious major environmental impacts such a hurricanes or tsunamis (e.g., cyclones Ofa and Val 

in 1990-1991 in Samoa; Lingard et al. 2012) or major socio-political disturbances, such as 

military conflicts (e.g., 1989-2003 Liberian civil war; Belhabib et al. 2013), which we explicitly 

consider with regards to raising factors and the structure of time series. In such cases, our 

reconstructions mark the event through a temporary change (e.g., decline) in the catch time-series 

(documented in the text of each catch reconstruction), if only to give pointers for future research 

on the relationship between fishery catches and natural catastrophes or conflicts. As an aside, we 

note here that the absence of such a signal in the officially reported catch statistics (e.g., a 

reduction in catch for a year or two) in countries having experienced a major event of this sort 

(e.g., Cyclone Nargis in 2008 in Myanmar) is a sure sign that their official catch data are 

manufactured or at least questionable, without reference to what occurs on the ground (see also 

Jerven 2013). Overall, our reconstructions assume - when no information to the contrary is 

available - that commercial catches (i.e., industrial and artisanal) between anchor points can be 

linearly interpolated, while for non-commercial catches (i.e., subsistence and recreational), we 

generally use population or number of fishers trends over time to interpolate between anchor 

points (via per capita rates).   

Radical and rapid effort reductions (or even their attempts) as a result of an intentional policy 

decision (and actual implementation) do not occur widely. One of the few exceptions that comes 

to mind is the trawl ban of 1980 in Western Indonesia, whose partial implementation is discussed 

in Pauly and Budimartono (2015). The ban had little or no impact on official Indonesian fisheries 

statistics for Central and Western Indonesia, another indication that they, also, may have little to 

do with the realities on the ground   

  

Step 6: Estimation of total catch times series by combining (1) and (5).   
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A reconstruction is completed when the estimated catch time-series derived through steps 2-5 are 

combined and harmonized with the reported catch of Step 1. Generally, this will result in an 

increase of the overall catch, but several cases exist when the reconstructed total catch was lower 

than the reported catch. The best documented case of this situation is that of mainland China 

(Watson and Pauly 2001), whose over-reported catches for local waters in the North-west Pacific 

are inflated by under-reported catches taken by Chinese distant water fleets, which, in the 2000s, 

operated in the EEZs of over 90 countries, i.e., in most parts of the world’s oceans (Pauly et al. 

2014). The step of harmonizing reconstructed catches with the reported baselines obviously goes 

hand-in-hand with documenting the entire procedure, which is done via a text that is formally 

published in the scientific literature, or pending publication, is made available online as either a 

contribution in the Fisheries Centre Research Reports series or as a Fisheries Center Working 

Paper. These documents (available online via www.seaaroundus.org) should be consulted by 

anyone intending to work with our data.   

Several reconstructions were performed earlier in the mid- to late 2000s, when official data (i.e., 

FAO statistics or national data) were only available to earlier years. All these cases were 

subsequently updated to the most recent year of data, either by detailed reconstruction updates or 

by forward carry procedures (e.g., Zeller et al. 2015) in line with each country’s individual 

reconstruction approach to estimating missing catch data.   

  

Step 7: Quantifying the uncertainty in (6).   

On several occasions, after having submitted reconstructions to peer-reviewed journals, we were 

surprised by the vehemence with which referees insisted on a quantification of the uncertainty 

involved in our reconstructions. Our surprise was due to the fact that catch data, in fisheries 

research, are never associated with a measure of uncertainty, at least not in the form of anything 

resembling confidence intervals. We pointed out that the issue at hand was not one of precision 

(i.e., whether, upon re-estimation, we could expect to produce similar results), but about 

accuracy, i.e., attempting to eliminate a systematic bias, a type of error which statistical theory 

does not really address. However, this is an ultimately frustrating argument, as is the argument 

that officially reported catch data, despite being themselves sampled data (e.g., from commercial 

market sampling, Ulman et al. 2015; or landings site sampling, Jacquet et al. 2010), with 

unknown but potentially substantial margins of uncertainty, are never expected or thought to 

require measures of uncertainty.   

Hence, we applied to all reconstructions the procedure in Zeller et al. (2015) for quantifying their 

uncertainly, which is inspired from the ‘pedigrees’ of Funtowicz and Ravetz (1990) and the 

approach used by the Intergovernmental Panel on Climate Change to quantify the uncertainty in 

its assessments (Mastrandrea et al. 2010).  

  
Table 1. ‘Scores’ for evaluating the quality of time series of reconstructed catches, with their approximate   

confidence intervals (IPCC criteria from Figure 1 of Mastrandrea et al. 2010); the percent intervals, here updated 

from Zeller et al. (2015), are adapted from Ainsworth and Pitcher (2005) and Tesfamichael and Pitcher (2007).  

Score  +/- (%)  Corresponding IPCC criteria*  

http://www.seaaroundus.org/
http://www.seaaroundus.org/
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4  Very high  10  High agreement & robust evidence  

3  High  20  High agreement & medium evidence or medium agreement & robust 

evidence  

2  Low  30  High agreement & limited evidence or medium agreement & medium 

evidence or low agreement & robust evidence.   

1  Very low  50  Low agreement & low evidence  

Mastrandrea et al. (2010) note that “confidence increase” (and hence confidence intervals are reduced) “when 

there are multiple, consistent independent lines of high-quality evidence”.  

  

This procedure consist of the authors of the reconstructions attributing to each reconstruction a 

score for each catch estimate by fisheries sector (industrial, artisanal, etc.) in each of three periods 

(1950-1969, 1970-1989 and 1990-2010) expressing their evaluation of the quality of the time 

series, i.e., (1) ‘very low’, (2) ‘low’, (3) ‘high’ and (4) ‘very high’. Note the absence of a 

‘medium’ score, to avoid the non-choice that this easy option would represent. Each of these 

scores corresponds to a percent range of uncertainty (Table 1) adapted from Monte-Carlo 

simulations in Ainsworth and Pitcher (2005) and Tesfamichael and Pitcher (2007). The overall 

score for the reconstructed total catch of a sector and/or period can then be computed from the 

mean of the scores for each sectors, weighted by their catch, and similarly for the relative 

uncertainty. Alternatively, the percent uncertainty for each sector and period can be used for a 

full Monte Carlo analysis.   

  

Foreign and illegal catches  

Foreign catches are catches taken by industrial vessels (by definition, all foreign fishing in the 

waters of another country is deemed to be industrial in nature) of a coastal state in the EEZ, or 

EEZ-equivalent waters of another coastal state. As the High Seas legally belong to no one (or to 

everybody, which is here equivalent), there can be no ‘foreign’ catches in the High Sea. Prior to 

UNCLOS, and the declaration of EEZs by maritime countries, foreign catches were illegal only if 

conducted within the territorial waters of such countries (generally, but not always 12 nm). Since 

the declarations of EEZs by the overwhelming majority of maritime countries, foreign catches are 

considered illegal if conducted within the (usually 200 nm) EEZ and without access agreement 

with the coastal state (except in the EU, whose waters are managed by a ‘Common Fisheries 

Policy’ which implies a multilateral ‘access agreement’).  

Such agreements can be tacit and based on historic rights, or more commonly explicit and 

involving compensatory payment for the coastal state. The Sea Around Us has created a database 

of such access and agreements, which is used to allocate the catches of distant-water fleets to the 

waters where they were taken (see Section #4).  

Many catch reconstructions, in addition to identifying the catch of domestic fleets, often at least 

mention the foreign countries fishing in the waters of the country they cover (information we use 
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in our access database), while other reconstructions explicitly quantify these catches (particularly 

in West Africa, see Belhabib et al. 2012).  

This information is then combined and harmonized with:  

a) the catches deemed to have been taken outside a country’s EEZ, as derived in Step 1 

above and further detailed in Section #4, and   

b) the landings of countries reported by FAO as fishing outside the FAO areas in which they 

are located (e.g., Spain in FAO Area 27 reporting catches from Area 34, Figure 1), which 

always identifies these catches as distant-water landings, and thus allows estimation of the 

catch by foreign fisheries in a given area and even EEZ.   

Conservative estimates of discards are then added to these foreign landings, estimated from the 

discarding rates of the domestic fisheries operating in the countries and/or FAO areas in question.   

  

Catch composition  

The taxonomy of catches is what allows catches to be mapped in an ecosystem setting, as 

different taxa have different distribution ranges and habitat preferences (see Section #3). Also, 

temporal changes in the relative contribution of different taxa in the catch data also indicate 

changes in fishing operations and/or in dominance patterns in exploited ecosystems. Thus, 

various ecosystem state indicators can be derived from catch composition data, e.g., the ‘mean 

temperature of the catch’ which tracks global warming (Cheung et al. 2013), ‘stock-status plots’ 

which can provide a first-order assessment of the status of stocks (Kleisner et al. 2013) and the 

marine trophic index, which reveal instances of “fishing down marine food webs” (Pauly et al. 

1998; Pauly and Watson 2005; Kleisner et al. 2014, see also www.fishingdown.org).  

Most statistical systems in the word manage to present at least some of their catch in 

taxonomically disaggregated form (i.e., by species), but many report a large fraction of their catch 

as over-aggregated, uninformative categories such as ‘other fish’ or ‘miscellaneous marine fishes’ 

(or ‘marine fishes nei’ [not elsewhere included]). Interestingly, many official national datasets 

have better taxonomic resolution than the data reported to FAO by national authorities. It is 

highly likely that this is largely the result of the design of the data request form that FAO 

distributes to countries each year, which does not actively encourage (nor even suggest) that more 

detailed national taxonomic resolution data should be provided whenever possible. We have 

attempted to reduce the contribution of such over-aggregated groups by using taxonomic 

information from a variety of local and regional studies The species and higher taxa in the catch 

of a given country or territory can thus belong to either one three groups:   

(1) Species or higher taxa that were already included in the baseline reported data;  

(2) Species or higher taxa into which over-aggregated catches have been subdivided using 

two or more sets of catch composition data, such that the changing catch composition data 

reflect at least some of the observed changes of fishing operations and/or in the 

underlying ecosystem;   

(3) Species or higher taxa into which over-aggregated catches have been subdivided using 

only one set of catch composition data, and which therefore cannot be expected to reflect 

http://www.fishingdown.org/
http://www.fishingdown.org/
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changes in catch compositions due to changes in fishing operations and/or changes in the 

underlying ecosystem. This score is also applied in cases where no local/national 

information on the taxonomic composition was available, and thus a taxonomic resolution 

from neighbouring countries was applied.  

We have labelled every taxon in the catch time-series of every country with (1), (2) or (3) such 

that (3) and perhaps also (2) are NOT used to compute indicators such as outlined above (they 

would falsely suggest an absence of change) – although we fear that this will still occur.  

  

In summary, the approach we developed and utilized for undertaking the catch reconstructions for 

every maritime country/territory in the world consists of a well-structured system for utilizing all 

available data sources, and applying a conservative, but comprehensive integration approach.   
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Section 2  

Reconstructing catches of large pelagic fishes2  
Frédéric Le Manach, Andrés M. Cisneros-Montemayor, Dirk Zeller and Daniel Pauly  

  

Despite tuna fisheries being among the most valuable in the world (FAO 2012), as well as the 

considerable interest by civil society in the management of large pelagics, there are, to date, no 

global and comprehensive spatial datasets presenting the historical industrial catches of these 

species.    

Here, we present the methods used to produce a first comprehensive spatial set of large pelagics 

fisheries catch data.3 To achieve this, we assembled various existing tuna datasets (Table 1), and 

harmonized them using a rule-based approach.  

For each ocean, the nominal catch data were spatialized according to reported proportions in the 

spatial data. For example, if France reported 100 tonnes of yellowfin tuna in 1983 using longlines 

in the nominal dataset, but there were 85 tonnes of yellowfin tuna reported spatially in 1983 by 

France using longlines, in four separate statistical cells (potentially of varying spatial size), the 

nominal 100 tonnes for France were split up into those four spatial cells according to their 

reported proportion of total catch in the spatial dataset. This matching of the nominal and spatial 

records was done over a series of successive refinements, with the first being the best-case 

scenario, in which there were matching records for year, country, gear and species. The last 

refinement was the worst-case scenario, in which there were no matching records except for the 

year of catch. For example, if France reported 100 tonnes of yellowfin tuna caught in 1983 using 

longlines, but there were no spatial records for any country catching yellowfin tuna in 1983, the 

nominal 100 tonnes for France were split up into spatial cells according to their reported 

proportion of total catch of any species and gear in 1983. After each successive refinement, the 

matched and non-matched records were stored separately, so that at each new refinement, only 

the previous step's non-matched records were used. The matched database was added to at the 

end of each step. The end result was a catch baseline database containing all matched and 

spatialized catch records, which sum up to the original nominal catch.   

  
Table 1. Overview of the various data sources used for the creation of global catch maps of industrially caught tuna and other large pelagic fishes.  

Ocean  RFMO  Sources  Spatial resolution  Countries/gear Nominal catch   Spatialized catch  /species  
Atlantic  ICCAT  ICCAT website  ICCAT website  1°x1°, 5°x5°, 5°x10°,  

10°x10°, 10°x20°, 20°x20°  
114/48/142  

Indian  IOTC  IOTC website  IOTC website  1°x1°, 5°x5°, 10°x10°,  
10°x20°, 20°x20°  

57/35/45  

Eastern Pacific.  IATTC  IATTC website  FAO Atlas of Tuna and Billfishes  5°x5° c  28/11/19  
Western Pacific  WCPFC  WCPFC website  WCPFC website  5°x5°  41/9/9  
Southern  CCSBT  Via CCSBT staff  CCSBT website  5°x5°  11/8/1  

 

                                                 
2 Adapted from: Le Manach, F, Chavance, P, Cisneros-Montemayor, AM, Lindop, A, Padilla, A, Zeller, D, Schiller, L and Pauly, D. 2015. Global 

catches of large pelagic fishes, with emphasis on the High Seas, In: Pauly D and Zeller D (eds.) Global Atlas of Marine Fisheries: Ecosystem Impacts 

and Analysis. Island Press, Washington, D.C.  
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The catches thus assigned to the various sized tuna-cells (1o x 1o to 20o x 20o; Table 1) were then 

spatially allocated to the standard 0.5° x 0.5° degree cells used by the Sea Around Us following 

the procedure described in Section #4. All artisanal catches (i.e., any gear other than industrial 

scale longlines, purse-seines, and pole-and-lines,4 as well as ‘offshore gillnets’) were reallocated 

to the EEZs of origin of the fleet, as the Sea Around Us defines artisanal fleets as being restricted 

to domestic areas (Section #1). Here, only the industrial catches are presented.   

Finally, a review of the literature was performed for each ocean to collect estimates of discards. 

Due to the limited amount of country- and fleet-specific data that this search yielded, it was  

                                                                                                                                                               
3 The Food and Agriculture Organization of the United Nations (FAO) has published a global, harmonized atlas, but it includes only the catch of 

12 species of tuna and billfishes (i.e., albacore, Atlantic bluefin tuna, Atlantic white marlin, bigeye tuna, black marlin, blue marlin, Pacific bluefin 

tuna, skipjack tuna, southern bluefin tuna, striped marlin, swordfish, and yellowfin tuna; FAO 2013). This atlas is available at:  
www.fao.org/figis/geoserver/tunaatlas. For reasons of confidentiality of commercial interests, this dataset entirely lacks longline data for the 

eastern Pacific area after 1962, managed by the IATTC, although some data for the earlier time-period have been published in aggregated form 

(Fonteneau 1997). A recent resolution on confidentiality rules may however mean that these spatialized data may become publicly available at 

some point (IATTC 2013). Fonteneau (1997) has also published a global atlas, but did not estimate discards, nor scaled the spatialized data up to 

100% of the nominal catch. Updates were published later, but at regional scales and without the Pacific Ocean (Fonteneau 2009, 2010). 4 Except 

when labeled ‘non-mechanized’, ‘coastal’, ‘small’ or such that non-industrial fishing can be inferred.   

decided that discard percentages should be averaged across the entire time-period and applied to 

the region of origin of the fleet (e.g., East Asia or Western Europe), rather than the actual country 

of origin of the fleet. Similarly to the spatialization step described above, successive refinements 

were then performed to add discards to all reported catch.  

Our approach introduces the first harmonized and spatially complete database of global large 

pelagic fisheries catches, including an estimate of discards. Until now, only regional (RFMO) or 

globally incomplete (e.g., the FAO Atlas of Tuna and Billfish Catches) databases existed, thus 

providing a truncated picture of these highly interconnected and global fisheries. The approach 

sued here, while preliminary in nature, represents the concept and rationale of catch 

reconstruction as applied to the global large tuna and billfish fisheries. Here, we mention several 

points that can be improved upon in future iterations:  

- The IATTC (Inter-American Tropical Tuna Commission) posed some data problems by not 

yet releasing the spatialized catches for all gears. We hope that spatialized IATTC data will 

become available in the future, which will then improve mapping of tuna catches in the 

northeast Pacific;  

- The ICCAT nominal catch database contains some qualitative geographic information (i.e., 

‘sub-areas’), which are apparently not geographically defined. Thus, we could not use them 

to refine our coarse spatialization. If these sub-areas were to become geographically 

defined, it would allow for improved spatial assignment of catches;  

- Discard rates used here only account for a subset of the literature, and difficulties exist in 

harmonizing them. Feedback from worldwide experts could allow us to refine these rates, 

by integrating a rule-based approach by gear and country to our discard estimation; and  

http://www.fao.org/figis/geoserver/tunaatlas
http://www.fao.org/figis/geoserver/tunaatlas
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- Finally, other global databases such as www.fishbase.org can be used to refine our spatial 

distribution of the catch by, e.g., restricting species to certain areas of high and consistent 

occurrence.  
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Section 3  

Taxon distributions3  
  

Maria-Lourdes.D. Palomaresa, Linh Dinh Tranc, Amy Rose Coghlana, 

Joseph Sheedyc, William Cheungb, Vicky Lama and D. Paulya  
a) Sea Around Us, University of British Columbia, Vancouver, Canada.  
b) Changing Ocean Unit, University of British Columbia, Vancouver, Canada. 
c) Vulcan Inc., Seattle, Washington, USA 

 

Ecosystem-based fisheries management (EBFM, Pikitch et al. 2004) must include a sense of 

place, where fisheries interact with the animals of specific ecosystems. To be useful to 

researchers, managers and policy makers attempting to implement EBFM schemes, the Sea 

Around Us presents biodiversity and fisheries data in spatial form onto a grid of about 180,000 

half degree latitude and longitude cells which can be regrouped into larger entities, e.g., the 

Exclusive Economic Zones (EEZs) of maritime countries, or the system of currently 66 Large 

Marine Ecosystems (LME) initiated by NOAA (Sherman et al. 2007), and now used by 

practitioners throughout the world.  

However, not all the marine biodiversity of the world can be mapped in this manner; thus, while 

FishBase (www.fishbase.org) includes all marine fishes described so far (more than 15,000 spp.), 

so little is known about the distribution of the majority of these species that they cannot be 

mapped in their entirety. The situation is even worse for marine invertebrates, despite huge 

efforts (see www.sealifebase.org).  

                                                 
3 Adapted from: Palomares MLD, Cheung WWL, Lam VWY and Pauly D 2016. The distribution of exploited marine biodiversity, In: Pauly D and 

Zeller D (eds.) Global Atlas of Marine Fisheries: Ecosystem Impacts and Analysis. Island Press, Washington, D.C.  

http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.sealifebase.org/
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Scientific and common names 

Before taxon distributions can be generated, the taxonomic ‘validity’ of a name needs to be 

verified, and all names standardized across all data sources being used. The names provided for 

the taxa included in the Sea Around Us catch data originate either from FAO or from other source 

material used by catch reconstructions (See Section #1 and Section #2), but were verified using 

FishBase for fish and SeaLifeBase for non-fish taxa. 

Common names, which is what most people know about most organisms, are provided in 

English, and increasingly also in other languages. FishBase provides common names in other 

languages for fish, covering nearly 200,000 different names in over 200 languages. FishBase also 

provides a rationale for the use of common names, and the way the names it contains were 

assembled. 

Scientific names differ in various features, depending on whether they pertain to species, genera, 

families, orders, classes and phyla. 

Species names always consist of two parts, a unique genus name (whose first letter is always 

capitalized) and a species epithet (whose first letter is never capitalized). Both components of the 

names should be written in italics whenever possible, i.e., Gadus morhua being the scientific 

species name for the Atlantic cod.  

The name of a genus (plural = genera) must be unique (i.e., there is no other such name in the 

entire animal kingdom) and its first letter is always capitalized. A genus can include one or 

several species, i.e. Chanos sp., or Stolephorus spp.. For more rules regarding the naming of 

species and genera, see www.fishbase.de/manual/fishbasespecies_of_fishes.htm   

Families consist of one, or more commonly, several genera. Family names among animals 

always end in -idae, e.g. Gadidae (cods). Family names are not italicized, but always capitalized. 

Sometimes, ‘common’ names are derived from the scientific names of families, e.g. ‘loliginids’ 

for squids of the Family Loliginidae, but this usually leads to names that are little used, even 

when the family was based on a generic name, itself based on a (Latin) common name, e.g., 

'Loligo'. We have kept such names, however, if they occurred in the FAO catch database, in order 

to maintain as much compatibility as possible.  

Orders consist of one or more families, their names in fishes end in ‘–formes’ and in ‘-a’ in 

invertebrates. Orders are not italicized but always capitalized. Thus, for example the Gadiformes 

include the families Gadidae (cods), Merluccidae (hakes), and others, all more closely related to 

each other than to, e.g., the herrings, sardines, etc. (the Clupeiformes). 

Classes consist of one or more orders, their names in fishes end in ‘-ii’ and in ‘-a’ for 

invertebrates. Class names are not italicized but always capitalized. Thus, for example both the 

above mentioned orders Gadiformes and Clupeiformes are in the Class Actinopterygii.  

In addition, and to distinguish fish from invertebrates, we also include information on the Phylum 

of a species. Note that all fishes are under the Phylum Chordata (which is the same taxonomic 

http://www.fishbase.de/manual/fishbasespecies_of_fishes.htm
http://www.fishbase.de/manual/fishbasespecies_of_fishes.htm
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branch that also includes marine mammals, sea birds, sea snakes, etc., which are not included in 

the Sea Around Us catch data), while exploited invertebrates generally belong to four phyla, i.e., 

Arthropoda (lobsters, crabs, shrimps), Mollusca (octopuses, squids, cuttlefishes, bivalves, 

gastropods), Echinodermata (sea cucumbers, sea stars, sea urchins) and Cnidaria (jellyfishes). 

The Sea Around Us data also include broader, but taxonomically ill-defined groups (e.g., 

‘miscellaneous marine fishes’, also called ‘marine fishes nei’4 in FAO parlance), usually the 

result of suboptimal systems having been set up by various countries for collecting and reporting 

fisheries catch data. The Sea Around Us strives to disaggregate such data during the 

reconstruction process, i.e., to allocate them to the appropriate lower taxonomic levels, and we 

anticipate that the number of broad categories in the database, and especially the amount of catch 

they represent, will gradually decline. 

 

Groups we report on besides ‘taxa’  

Because there are more than 2,000 species and other groups included in our global fisheries 

catches, we have decided to provide taxon specific data on our website for only a user-definable 

subset of the total number of individual taxa (plus an ‘Others’ group containing all other 

taxonomic entities combined), but we also provide data using two other types of aggregated 

groups for all catch. 

The first is a general grouping of the catch by 12 broad groups that we call ‘commercial groups’. 

These are anchovies, herring-like fishes, perch-like fishes, tuna and billfishes, cod-like fishes, 

salmons and smelts, flatfishes, scorpion fishes, sharks and rays, crustaceans, mollusks, and 'other 

fishes and invertebrates'. 

The other grouping is based partly on taxonomy, but mostly on habitat preferences, feeding 

habits, and maximum size, which define what we call ‘functional groups’ as required for 

ecosystem modeling (e.g., Ecopath with Ecosim, Christensen et al. 2009). This grouping 

separates animals by where they live in the water column. Demersal animals that live on or are 

closely associated with the sea bottom are separated from those that live predominately in the 

water column or near the water surface (e.g., pelagic). Benthopelagic taxa refer to those that live 

and feed near the bottom as well as in mid-water or near the surface. Habitat separation is further 

described by depth zones, with bathypelagic and bathydemersal taxa referring to taxa living in 

the 1000-4000 m depth zone. Finally, we have separated out reef associated taxa as well as 

sharks, rays, flatfishes, and a few invertebrate groups (cephalopods, shrimps, lobsters and crabs, 

jellyfish, krill, and other demersal invertebrates). The functional groups for fishes are further 

separated by size: small individuals under 30 cm when at maximum length (e.g., small herring 

species), those that are 30 to 90 cm (e.g., medium sized jacks and mackerels), and those over 90 

cm (such as tunas), except for sharks, rays and flatfishes, which are grouped into two categories 

(small and medium versus large). Overall, we have defined 30 functional groups (Table 1). This 

grouping system, besides facilitating ecological studies, is useful for studying the impacts of 

                                                 
4 ‘nei’ stands for ‘not elsewhere identified’.  
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fishing gears, as different functional groups tend to be impacted and targeted by various fishing 

gears differently. 

  

  
Table 1. Functional groups as defined by the Sea Around Us for 

catch reporting and ecosystem modeling.   

 
Small Pelagics (<30 cm)  
Medium Pelagics (30 - 90 cm)  
Large Pelagics (>=90 cm)  
Small Demersals (<30 cm)  
Medium Demersals (30 - 90 cm)  
Large Demersals (>=90 cm)  
Small Bathypelagics (<30 cm)  
Medium Bathypelagics (30 - 90 cm)  
Large Bathypelagics (>=90 cm)  
Small Bathydemersals (<30 cm)  
Medium Bathydemersals (30 - 90 cm)  
Large Bathydemersals (>=90 cm)  
Small Benthopelagics (<30 cm)  
Medium Benthopelagics (30 - 90 cm)  
Large Benthopelagics (>=90 cm)  
Small Reef associated fish (<30 cm)  
Medium Reef associated fish (30 - 90 cm)  
Large Reef associated fish (>=90 cm)  
Small to Medium Sharks (<90 cm)  
Large Sharks (>=90 cm)  
Small to Medium Rays (<90 cm)  
Large Rays (>=90 cm)  
Small to Medium Flatfishes (<90 cm)  
Large Flatfishes (>=90 cm)  
Cephalopods  
Shrimps  
Lobsters, crabs  
Jellyfish  
Other demersal invertebrates  
Krill  

 
  

Mapping distributions  

We define as ‘commercial’ all marine fish or invertebrate species that are either reported in the 

catch statistics of at least one of the member countries of the Food and Agriculture Organization 

of the United Nations (FAO), or are listed as part of commercial and non-commercial catches 

(retained as well as discarded) in country-specific catch reconstructions (see Section #1 and 

Section #2). For most species occurring in the landings statistics of FAO, there were enough data 

in FishBase for at least tentatively mapping their distribution ranges. Similarly, most species of 

commercial invertebrates had enough information in SeaLifeBase for their approximate 

distribution ranges to be mapped. We discuss below the procedure we use for taxa that lacked 

sufficient data for mapping their distribution, which included only few taxa in the FAO statistics, 

but many from reconstructed catches, including discards. 
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In the following, we document how such mapping is done. Thus, this contribution presents the 

methods (improved from Close et al. 2006) by which all commercial species distribution ranges 

(over 2,000 for the 1950-2010 time period) were constructed and/or updated, and consisting of a 

set of rigorously applied ‘filters’ that will markedly improve the accuracy of the Sea Around Us 

maps and other products. 

The ‘filters’ used here are listed in the order that they are applied. Prior to the ‘filter’ approach 

presented below, the identity and nomenclature of each species is verified using FishBase or 

SeaLifeBase, the two authoritative online encyclopedia covering the fishes of the world and 

marine non-fish animals, respectively, and their scientific and English common names corrected 

if necessary. This information is then standardized throughout all Sea Around Us databases (see 

Section #4). Following the creation of all species-level distributions as described here, taxon 

distributions for higher taxonomic grouping are generated by combining each taxon-level’s 

contributing components as discussed above and detailed in the section on Creating filters for 

higher taxa. 

Note that the procedures presented here avoid the use of temperature and primary productivity to 

define or refine distribution ranges for any species, even though these factors strongly shape the 

distribution of marine fishes and invertebrates (Ekman 1967; Longhurst and Pauly 1987). This 

was done in order to allow for subsequent analyses of distribution ranges to be legitimately 

performed using these variables, i.e., to avoid circularity. 

  

Filter 1: FAO Areas  

The FAO has divided the world’s oceans into 19 statistical areas for reporting purposes (see 

Section #1). Information on the occurrence of commercial species within these areas is available 

primarily through (a) FAO publications and the FAO website (www.fao.org); and (b) FishBase 

and SeaLifeBase. Figures 1A and 2A illustrate the occurrence by FAO area of Florida pompano 

(Trachinotus carolinus) and silver hake (Merluccius bilinearis), i.e., examples representing 

pelagic and demersal species, respectively. 

  

Filter 2: Latitudinal range  

The second filter applied in this process is latitudinal ranges. The latitudinal range of a species is 

defined as the space between its northernmost and southernmost latitudes. This range can be 

found in FishBase for most fishes and in SeaLifeBase for many invertebrates. For fishes and 

invertebrates for which this information was lacking, latitudes were inferred from the latitudinal 

range of the EEZs of countries where they are reported to occur as endemic or native species, 

and/or from occurrence records in the Ocean Biogeographic Information System website (OBIS; 

www.iobis.org). Note, however, that recent occurrence records (from the 1980s onwards and 

known range extensions, e.g., of Lessepsian species) were not used to determine ‘normal’ 

latitudinal ranges, as they tend to be affected by global warming (Cheung et al. 2009).  

A species will not have the same probability of occurrence, or relative abundance throughout its 

latitudinal range; it can be assumed to be most abundant at the center of its range (McCall 1990). 

Defining the center of the latitudinal distribution range is done using the following assumptions:  
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a) For distributions confined to one hemisphere, a symmetrical triangular probability 

distribution is applied, which estimates the center of the latitudinal range as the average of 

the range, i.e., [northernmost + southernmost latitude] / 2;  

b) For distributions straddling the equator, the range is broken into three parts – the outer 

two thirds and the inner or middle third. If the equator falls within one of the outer thirds 

of the latitudinal range, then abundance is assumed to be the same as in (a). If, however, 

the equator falls in the middle third of the range, then abundance is assumed to be flat in 

the middle third and decreasing to the poles for the remainder of the range.  

Figures 1B and 2B illustrate the result of the FAO and latitudinal filters combined. Both the 

Florida pompano and the silver hake follow symmetrical triangular distributions as mentioned in 

(a) above.  

  

Filter 3: Range-limiting polygon  

Range-limiting polygons help confine species in areas where they are known to occur, while 

preventing their occurrence in other areas where they could occur (because of environmental 

conditions), but do not. There may be one (one water body or restricted occurrence) or a set of 

polygons (several or discontinuous water bodies) which describe the occurrence of a species, the 

whole compilation of which is here referred to as a distribution extent. Distribution range maps 

are here defined as published maps which define the geographic range in which a species may 

occur. Distribution range maps for a vast number of species of commercial fish and invertebrates 

can be found in various publications, notably FAO’s species catalogues, species identification 

sheets, guides to the commercial species of various countries or regions, and in online resources, 

some of which were obtained from model predictions, e.g., Aquamaps (Kaschner et al. 2008; see 

also www.aquamaps.org). Most range maps are mostly based on observed species occurrences, 

which may or may not be representative of the actual distribution range of the species. 

Occurrence records assume that the observer correctly identified the species being reported, 

which adds a level of uncertainty to the validity of distribution extents. Most often than not, 

experts are required to review and validate a component polygon in a distribution extent before it 

is published, e.g., in FAO or IUCN Red List species fact sheets. This review process is also 

important, notably for maps that are automatically generated via model predictions such as 

Aquamaps. Note that for commercially important endemic species, this review process can be 

skipped as the distribution extent is restricted to the only known habitat and country where such 

species occurs (generally described by one polygon). In addition, extents for species which were 

introduced and which have established populations that are important in fisheries, will include 

both native and introduced ranges (and thus possibly several polygons). 

For species without published extents, distribution extents are generated using the filter process 

described here and compared with the native distribution generated in Aquamaps. Differences 

between these two ‘model-generated’ maps are verified using data from the scientific literature 

and OBIS/GBIF (i.e., reported occurrences, notably from scientific surveys). Note that FAO 

statistics, in which countries report a given species in their catch, can be used as occurrence 

records, the only exception being if the species was caught by the country’s distant-water fleet. 

http://www.aquamaps.org/
http://www.aquamaps.org/
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Polygons are drawn based on the verified map (i.e., with unverified occurrences deleted). 

Additionally, faunistic work covering the high-latitude end of continents and/or semi-enclosed 

coastal seas with depauperate faunas (e.g., Hudson Bay, or the Baltic Sea) were used to avoid, 

where appropriate, distributions reaching into these extreme habitats. The results of this step, i.e., 

the information gathered from the verification of occurrences, are also provided to FishBase and 

SeaLifeBase to fill data gaps. 

All polygons, whether available from a publication or newly drawn, were digitized with the free 

software QGIS, and were later used for inferences on equatorial submergence (see below). 

Figures 1C and 2C illustrate the result of the combination of the first three filters, i.e., FAO, 

latitude and range-limiting polygons. These parameters and polygons will be revised periodically, 

as our knowledge of the species in question increases. 
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Figure 1. Partial results obtained following the application of the filters used for deriving a 

species distribution range map for the Florida pompano (Trachinotus carolinus): (A) 

illustrates the Florida pompano’s presence in FAO areas 21, 31 and 41; (B) illustrates the 

result of overlaying the latitudinal range (43°N to 9°S; see Smith 1997) over the map in A; 

(C) shows the result of overlaying the (expert-reviewed) range-limiting polygon over B; and 

(D) illustrates the relative abundance of the Florida pompano resulting from the application 

of the depth range, habitat preference and equatorial submergence filters on the map in C.  

  

    

  



Methods-Catch&Allocation-www.seaaroundus.org  April 28, 2016  

  

25  

  

  
Figure 2. Partial results obtained following the application of the filters used for deriving a 

species distribution range map for the silver hake (Merluccius bilinearis): (A) illustrates the silver 

hake’s presence in FAO areas 21 and 31; (B) illustrates the result of applying the FAO and 

latitudinal range (55°N to 24°N; see FAO-FIGIS 2001); (C) shows the result of overlaying the 

(expert-reviewed) range-limiting polygon over B; and (D) illustrates the silver hake’s relative 

abundance resulting from the application of the depth range, habitat preference and equatorial 

submergence filters on the map in C.  

  

Note that because this mapping process only deals with commercially-caught species, the 

distribution ranges for higher level taxa (genera, families, etc.) were generated using the 

combination of distribution extents from the commercial species level taxa (see section on 

Creating filters for higher taxa). While this procedure will not produce the true distribution of 

the genera and families in question, which usually consists of more species than are reported in 

catch statistics, it is likely that the generic names in the catch statistics refer to the very 

commercial species that are used to generate the distribution ranges, as these taxa are frequently 

more abundant than the ones that are not reported in official catch statistics.  
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Filter 4: Depth range  

Similar to the latitudinal range, the ‘depth range’, i.e., “[the] depth (in m) reported for juveniles 

and adults (but not larvae) from the most shallow to the deepest [waters]”, is available from 

FishBase for most fish species and SeaLifeBase for many commercial invertebrates, along with 

their common depth, defined as the “[the] depth range (in m) where juveniles and adults are most 

often found. This range may be calculated as the depth range within which approximately 95% of 

the species biomass occurs” (Froese et al. 2000). Given this, and based on Alverson et al. (1964), 

Pauly and Chua (1988), and Zeller and Pauly (2001), among others, the abundance of a species 

within the water column is assumed to follow a scalene triangular distribution, where maximum 

abundance occurs at the top one-third of its depth range.  

  

Filter 5: Habitat preference  

Habitat preference is an important factor affecting the distribution of marine species. Thus, the 

aim of this filter is to enhance the prediction of the probability that a species occurs in an area, 

based on its association with different habitats. Two assumptions are made here:  

a) That, other things being equal, the relative abundance of a species in a spatial ½ 

degree cell is determined by a fraction derived from the number of habitats that a 

species associates with in that same cell, and by how far the association effect will 

extend from that habitat; and 

b) That the extent of this association is assumed to be a function of a species’ maximum 

size (maximum length) and habitat ‘versatility’. Thus, a large species that inhabits a 

wide range of habitats is more likely to occur far from the habitat(s) with which it is 

associated, while smaller species tend to have low habitat versatility (Kramer and 

Chapman 1999). 

The maximum length and versatility of a species are classified into three categories, and it is 

assumed that a species can associate with one or more categories with different degrees of 

membership (0 to 1). A higher membership value means a higher ‘probability’ that the species is 

associated with that particular category. The membership values are defined by a pre-specified 

membership function for each of the length and versatility categories (Figure 3). For example, the 

striped bass (Morone saxatilis) has a maximum length of 200 cm (total length). Based on the 

predefined membership function presented in Figure 3A, the striped bass has a large body size 

with a membership of 1. Note that there are maximum length estimates for all the exploited 

species used by the Sea Around Us, derived from FishBase and SeaLifeBase. 
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Figure 3. Fuzzy membership functions for the three categories 

of (A) maximum length and (B) habitat versatility of a species. 

Habitat versatility is defined as the ratio of the number of habitat 

types with which a species is associated to the total number of 

defined habitat types in Table 1. For example, the striped bass 

(Morone saxatilis) grows to a maximum total length of 200 cm 

(large body size; degree of membership = 1). It occurs in 

estuaries and ‘other habitats’ (2 of 5 defined habitats, i.e., 

versatility = 0.4, low to moderate degree of membership = 0.4-

0.6).  

  

The ability of a species to inhabit different habitat types, here referred to as ‘versatility’, is 

defined as the ratio between the number of habitats with which a species is associated to the total 

number of habitats as defined in Table 2. These habitats are categorized as ‘biophysical’ (i.e., 

coral reef, estuary, sea grass, seamount, other habitats), ‘depth-related’ (shelf/slope/abyssal), and 

‘distance from coast’ (inshore/offshore). As species are generally specialized towards 

‘biophysical’ habitats, this filter only takes those five habitats into consideration. Taking our 

example again, FishBase lists the following for the striped bass: “Inhabit coastal waters and are 

commonly found in bays but may enter rivers in the spring to spawn” (Eschmeyer et al. 1983). 

This associates the striped bass with estuaries and ‘other habitats’ (i.e., when it enters rivers to 

spawn). Given that the total number of defined biophysical habitats is five, and the striped bass is 

associated with two of those, then the versatility of striped bass is estimated to be 0.4 (i.e., 2/5). 

Finally, based on the defined membership functions shown in Figure 3B, the versatility of striped 
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bass is classified as ‘low’ to ‘moderate’, with a membership of approximately 0.4 and 0.6, 

respectively.  

  
Table 2. Habitat categories used here, and for which global maps are available in the Sea Around Us, with some of 

the terms typically associated with them (in FishBase, SeaLifeBase and other sources).  
Categories  Specifications of global map  Terms often used  
Estuary  Alder (2003)  Estuaries, mangroves, river mouth  
Coral  UNEP-WCMC (2010)  Coral reef, coral, atoll, reef slope  
Sea grass  Not yet available*  Sea grass bed  
Seamounts  Kitchingman and Lai (2004)  Seamounts  
Other habitats  –  Muddy/sandy/rocky bottom  
Continental shelf  NOAA (2004)  Continental shelf, shelf  
Continental slope  NOAA (2004)  Continental slope, upper/lower slope  
Abyssal  NOAA (2004)  Away from shelf and slope  
Inshore  NOAA (2004)  Shore, inshore, coastal, along shoreline  
Offshore  NOAA (2004)  Offshore, oceanic  

* The Sea Around Us is developing a global map of sea grass, which will 

be applied when available.  

  

Determining habitat association  

Qualitative descriptions relating the commonness (or preference) of a species to particular 

habitats (as defined in Table 1) are given weighting factors as enumerated in Table 3. Such 

descriptions are available from FishBase for most fishes and in SeaLifeBase for most 

commercially important invertebrates. Going back to our example, we thus know that the striped 

bass occurs in (and thus prefers) brackish water (i.e., estuaries), but enters freshwater (i.e., 'other 

habitats') to spawn. Given the weighting system in Table 3, estuaries is assigned a weight of 0.75 

(usually occurs in) and 'other habitats' is given a weight of 0.5 (assuming a seasonal spawning 

period). 

  
Table 3. Common descriptions of relative abundance of 

species in habitats where they occur and their assigned 

weighting factors. The weighting factor for ‘other habitats’ is 

assumed to be 0.1 when no further information is available.  
Description  Weighting 

factor  
Absent/rare  0.00  
Occasionally, sometimes  0.25  
Often, regularly, seasonally*  0.50  
Usually, abundant in, prefer  0.75  
Always, mostly, only occurs  1.00  
* If a species occurs in a habitat, but no indication of relative abundance 

is available, a default score of 0.5 is assumed.  

  

Maximum distance of habitat effect  

Maximum distance of habitat effect (maximum effective distance) refers to the maximum 

distance from the nearest perimeter of the habitat which ‘attracts’ a species to a particular habitat. 

This is defined by the maximum length and habitat versatility of the species using the heuristic 

rule matrix in Table 4. Taking our example for the striped bass, with a ‘large’ maximum length 

(membership=1) and ‘low’ to ‘moderate’ versatility (membership values of 0.4 and 0.6), points to 

a ‘farthest’ maximum effective distance in Table 4. The degree of membership assigned to 
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maximum effective distance is equal to the minimum membership value of the two predicates5, in 

this example, 1 vs. 0.4 = 0.4 and 1 vs. 0.6 = 0.6. When the same conclusion is reached from 

different rules, the final degree of membership equals the average membership value (in this 

example, (0.4+0.6)/2=0.50). 

The maximum effective distance from the associated habitat can be estimated from the 'centroid 

value' of each conclusion category, weighted by the degree of membership. The centroid values 

for ‘near’, ‘far’ and ‘farthest’ maximum effective distances were defined as 1 km, 50 km and 100 

km, respectively. In our example, we obtained membership values of 0.4 for near (1 km) and 0.6 

for farthest (100 km) maximum effective distance, respectively. This gives an estimate of (0.4*1 

+ 0*50 + 0.6*100)/(0.4 + 0 + 0.6) = 60.4 km (see Figure 4). 

  
Table 4. Heuristic rules that define the maximum effective distance from 

the habitat in which a species occurs. The columns and rules in bold 

characters represent the predicates (categories of maximum body size and 

versatility), while those in italics represent the resulting categories of 

maximum effective distance.  
Versatility   Maximum body size  

  
Low  

Small  Medium  Large  
Near  Near  Near  

Moderate  Far  Far  Farthest  
High  Far  Farthest  Farthest  

  

Estimating relative abundance in a spatial cell  

Several assumptions are made to simplify the computations. First, it is assumed that the habitat 

always occurs in the center of a cell and is circular in shape. Second, species density (per unit 

area) is assumed to be the same across any habitat type; and that density declines linearly from 

the habitat perimeter to its maximum effective distance. Given these assumptions, the total 

relative abundance of a species in a cell equals the sum of abundance on and around its associated 

habitat, expressed as:  

 B’T = (αj + αj+1 · (1 – αj)) · (1 – A)     … 4.1)  

where B’T is the final abundance, αj is the density away from the habitat from cell j, and A is the 

habitat area of the cell. The relative abundance resulting from the different habitat types is the 

sum of relative abundance, and is weighted by their importance to the species.  

Although these assumptions on the relationship between maximum length, habitat versatility and 

maximum distance from the habitat may render uncertain predicted distributions at a fine spatial 

scale, this routine provides an explicit and consistent way to incorporate habitat considerations 

into distribution ranges.  

  

                                                 
5 Predicate logic: a generic term for systems of abstract thought applied in fuzzy logic. In this example, the first-order logic predicate is “IF 

maximum weight is large”, and the second-order logic predicate is “AND versatility is moderate”. The resulting function, i.e., the conclusion 

category based on the predefined rules matrix in Table 3, is “THEN maximum effective distance is farthest”.  
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Figure 4. Maximum effective distance for striped bass (Morone saxatilis) 

estimated from the habitat versatility and maximum length of that species (see 

text).  

  

Filter 6: Equatorial submergence  

Eckman (1967) gives the current definition of equatorial submergence: “animals which in higher 

latitudes live in shallow water seek in more southern regions archibenthal or live in shallow 

water seek in more southern regions archibenthal or purely abyssal waters […]. This is a very 

common phenomenon and has been observed by several earlier investigators. We call it 

submergence after V. Haecker [1906-1908] who, in his studies on pelagic radiolarian, drew 

attention to it. In most cases, including those which interest us here, submergence increases 

towards the lower latitudes and therefore may be called equatorial submergence. Submergence is 

simply a consequence of the animal’s reaction to temperature. Cold-water animals must seek 

colder, deeper water layers in regions with warm surface water if they are to inhabit such regions 

at all.” Equatorial submergence, indeed, is caused by the same physiological constraints which 

also determine the ‘normal’ latitudinal range of species, as described above, and it shifts due to 

global warming, i.e., respiratory constraints fish and aquatic invertebrates experience at 

temperatures higher than that which they have evolved to prefer (Pauly 1998, 2010).  

Modifying the distribution ranges to account for equatorial submergence requires accounting for 

two constraints: (1) data scarcity; and (2) uneven distribution of environmental variables 

(temperature, light, food, etc.) with depth. FishBase and SeaLifeBase notwithstanding, there is 

little information on the depth distribution of most commercial species. However, in most cases, 

the following four data points are available for each species: the shallow end of the depth range 
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(Dshallow), its deep end (Ddeep), the poleward limit of the latitudinal range (Lhigh), and its lower 

latitude limit (Llow). If it is assumed that equatorial submergence is to occur, then it is logical to 

also assume that Dshallow corresponds to Lhigh, and that Ddeep corresponds to Llow. 

Also, we further mitigate data scarcity by assuming the shape of the function linking latitude and 

equatorial submergence. Here, two parabolas (P) are used (Figure 5), one for the shallow limits of 

the depth distribution (Pshallow), and one for the deeper limits (Pdeep), with the assumption that both 

Pshallow and Pdeep are symmetrical about the Equator. In addition, maximum depths are assumed 

not to change poleward of 600 N and 600 S. The uneven distribution of the temperature gradient 

can be mimicked by constraining Pshallow to be less concave than Pdeep by setting the geometric 

mean (Dgm) of Dshallow and Ddeep as the deepest depth that Pshallow can attain. Three points draw the 

parabolas. In most cases, Pshallow is obtained with D60°N=0, D60°S=0 and DLhigh=Dshallow, and Pdeep 

with D60°N=Dgm, D60°S= Dgm and DLlow=Dmax. If Lhigh is in the northern hemisphere and Llow is in 

the south, Pdeep is drawn with Ddeep at the Equator and conversely for the southern hemisphere. 

Finally, it is assumed that if a computed Pshallow intercepts zero depth at latitudes higher than 600 

N and/or lower than 600 S, then Pshallow is recomputed with D60°N=Dshallow , D60°S=Dshallow and 

DLhigh=0.  

Figure 5 illustrates three cases of submergence based on different constraints. When this process 

is applied to a distribution based on latitudinal range and depth, but which did not account for 

submergence, these have the effect of ‘shaving off’ parts of the shallow-end of that distribution at 

low latitudes, and similarly, shaving off part of the deep-end end of the distribution at high 

latitudes. Also, besides leading to narrower and more realistic distribution ranges, this leads to 

narrowing the temperature ranges inhabited by the species in question, which is important for the 

estimation of their preferred temperature, as used when modelling global warming effects on 

marine biodiversity and fisheries.  

The key outcome of the process described above consists of distribution ranges such as in Figure 

6 for currently over 2,000 taxa, which can be viewed via the Sea Around Us website. They are 

also accessible via FishBase and SeaLifeBase (click ‘Sea Around Us distributions’ under the 

‘Internet sources’ section of the species summary pages). These distribution ranges serve as basis 

for all spatial catch allocation done by the Sea Around Us (Section #4), and we welcome 

feedback, i.e., suggested comments or corrections.   

Predictions of distributions from the Sea Around Us algorithm are comparable in performance to 

other species modeling approaches that are commonly used for marine species (Jones et al. 

2012). Specifically, AquaMaps (Kaschner et al. 2008), Maxent (Phillips et al. 2006) and the Sea 

Around Us algorithm are three approaches that have been applied to predict distributions of 

marine fishes and invertebrates. Jones et al. (2012) applied these three species distribution 

modelling methods to commercial fish in the North Sea and North Atlantic using data from 

FishBase and the Ocean Biogeographic Information System. Comparing test statistics of model 

predictions with occurrence records suggest that each modelling method produced plausible 

predictions of range maps for each species. However, the pattern of predicted relative habitat 

suitability can differ substantially between models (Jones et al. 2013). Incorporation of expert 

knowledge, as discussed above with reference to Filter 3, generally improves predictions, and 

therefore was given here particular attention.  
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Figure 5.  Shapes used to generate ‘equatorial submergence’, given different 

depth/latitude data: (A) Case 1: Barndoor skate (Dipturus laevis) – when the distribution 

range of the species is at lower latitudes than 60o N and/or S, the shallow parabola 

(Pshallow) is assumed to intercept zero at 60o N and S; (B) Case 2: When a distribution 

range is spanning the northern and southern hemispheres, as in the case of the Warsaw 

grouper (Epinephelus nigritus), the deepest depth of the deep parabola (Pdeep) is at the 

Equator; (C) Case 3: Silver hake (Merluccius bilinearis), where the poleward limit of the 

latitudinal range (Lhigh) is at higher latitudes than 60o N and S.  

    

  

( a ) 

( b ) 
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Figure 6. ‘Equatorial submergence’ has the effect of ‘shaving off’ areas from the distribution range of the Warsaw 

grouper, Epinephelus nigritus: (A) Original distribution; (B) Distribution adjusted for ‘equatorial submergence’.  

 

Creating filters for higher taxa 

The taxonomic hierarchy adapted from FishBase and from SeaLifeBase and described in the 

section on scientific names, is used here to create a taxon’s‘lineage’ (facilitated by the 

POSTGRES feature, LTree) to group component species (and we reiterate, only of commercial 

species included in the Sea Around Us database) by genera, family, order, class and phyla. This 

basically draws a tree of exploited living resources when visualized. This lineage is the main 

parameter that enables the ‘roll-up’ (also referred to as a ‘walk’ up or down the tree) to higher 

taxa of the various filters described in the previous section. Thus for example, the lineage of 

Atlantic cod (Gadus morhua) is Gadus morhua (species; tree level 6), Gadus (genus; tree level 5), 

Gadidae (family; tree level 4), Gadiformes (order; tree level 3), Actinopterygii (class; tree level 

2), Chordata (phylum; tree level 1). 

The latitudinal range, distribution extent, depth range and habitat preference filters for higher taxa 

were obtained using this roll-up procedure. Latitudinal and depth ranges were rolled-up simply by 

looking up the minimum and maximum values for component species in a parent taxon’s lineage, 

i.e., a process that is termed as ‘containment’. Thus, for example, all intermediate values of 

latitudinal ranges are contained within the northernmost northern range and the southernmost 

southern range of species in a parent taxon. 

Rolling up the habitat index, effective distance and life history parameters for the habitat 

preference filter differs from the distribution extent procedure. Habitat index, effective distance 

and the values assigned to each of the habitat filters are treated first; and each habitat filter is 

treated separately. In cases where there is only one child taxon, the values for this taxon are 

carried over to the parent taxon. When there are several child taxa, frequency histograms are 

( a )   ( b )   
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created in order to obtain a weighted average of the likelihood of occurrence values per habitat 

filter. Habitat index and effective distance are then calculated using these weighted averages for 

the parent taxon. Life history parameters, except the VBGF parameter K, for parent taxa are 

averaged (as arithmetic mean) from the child taxa values. The parameter K is obtained from the 

average of Linf and Theta Prime and the empirical equation Theta Prime = logK + 2*logLinf 

(Pauly et al., 1998)). This process is repeated for each parent taxon up the tree, using the species 

level parameters and not the calculated intermediate level parameters. 

Rolling up the geographic distribution extent, for example, from species to the genus level, means 

combining the extents of all the child taxa (here species level) of the immediate parent (here 

genus level). Thus, the geographic extent of Gadus is built from the extents of the child taxa 

Gadus morhua, G. macrocephalus and G. ogac in the Sea Around Us database. This procedure is 

repeated to the highest level taxa. Thus, the extent of Gadidae is built from the extents of the 

species belonging to 12 gadid genera included in the database. Each child taxon extent is 

decomposed into its component polygons, which are then arranged in decreasing total area and 

looped through from largest to smallest area. The geographic extent of, e.g., Gadus, is built when 

total containment of (or in GIS terminology, the dissolution of) all child taxa polygons is attained. 

In cases where there is only one child taxon, the extent of this child taxon is carried over to the 

parent taxon. At the time of writing, there are 2,039 species level taxa in the Sea Around Us catch 

database (number subject to change over time), which currently belong to 262 genera, 187 

families, 19 orders, 11 classes and 5 phyla. Over 82% of the species level taxa have established 

extents obtained from expert reviewed maps from the IUCN, the FAO and AquaMaps. In cases 

where there are no available expert reviewed maps, in-depth research of ranges and occurrences 

are being performed, and the data will be provided to FishBase and SeaLifeBase so that 

AquaMaps can be generated and thus experts may be called upon to review them. All higher level 

taxa extents were built through their lineages with commercial species level extents only. 
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Section 4  

The Sea Around Us databases and their spatial dimensions6  
  

Vicky W.Y. Lam, Ar’ash Tavakolie, Daniel Pauly and Dirk Zeller  

  

The individual catch reconstructions for all countries and territories (by EEZ) are all available at 

www.seaaroundus.org. The underlying taxonomically disaggregated time series of catch data 

they contain, covering all years since 1950, 4 fishing sectors (industrial, artisanal, subsistence and 

recreational), 2 catch types (landed versus discarded catch) and 2 types of reporting status 

(reported versus unreported) for the Exclusive Economic Zones (EEZs) of all maritime countries 

and territories of the world, or parts thereof, are part of an extensive dedicated database, which 

interacts with the other databases of the Sea Around Us to generate the spatially allocated 

                                                 
6 Adapted from: Lam VWY, Tavakolie A, Pauly D and Zeller D 2016. The Sea Around Us catch database and its spatial expression, In: Pauly D and 

Zeller D (eds.) Global Atlas of Marine Fisheries: Ecosystem Impacts and Analysis. Island Press, Washington, D.C.  

http://mail.aerl.ubc.ca/exchange/a.ulman/Inbox/List%20of%20publ.%20w_xF8FF_%20track%20changes.EML/DP%20list%20of%20publications.doc/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/XIOO8C78/www.aquamaps.org/data
http://mail.aerl.ubc.ca/exchange/a.ulman/Inbox/List%20of%20publ.%20w_xF8FF_%20track%20changes.EML/DP%20list%20of%20publications.doc/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/XIOO8C78/www.aquamaps.org/data
http://mail.aerl.ubc.ca/exchange/a.ulman/Inbox/List%20of%20publ.%20w_xF8FF_%20track%20changes.EML/DP%20list%20of%20publications.doc/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/XIOO8C78/www.aquamaps.org/data
http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html.
http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html.
http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html.
http://data.unep-wcmc.org/datasets/1
http://data.unep-wcmc.org/datasets/1
http://data.unep-wcmc.org/datasets/1
http://data.unep-wcmc.org/datasets/1
http://www.seaaroundus.org/
http://www.seaaroundus.org/
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fisheries catches for the 180,000 half degree latitude and longitude cells covering the world 

ocean. These data represent the core product of the Sea Around Us.   

  

Catch database  

The catch reconstruction database comprises all of the catch reconstruction data by year, fishing 

country, taxon name, catch amount, fishing sector, catch type, reporting status, input data source 

and spatial location of catch such as Exclusive Economic Zone (EEZ), FAO area or other area 

designation (if applicable). The database is further sub-divided into three different data ‘layers’, 

which include a layer with the catch taken by a fishing country in its own EEZ (called ‘Layer 1’), 

the catch by each fishing country in other EEZs and/or the high seas (‘Layer 2’), and the catch of 

all tuna and large pelagic species caught by each fishing country’s industrial fleet (‘Layer 3’). 

The basic structure of Layers 1 and 2 are identical, while Layer 3 differs slightly in structure due 

to the nature of the large pelagic input data sets (see Section #2).   

  

Data verification process  

The process of data integration into the catch reconstruction database includes a data verification 

process, which is the first integration step of the original reconstruction dataset and associated 

reconstruction report. After completing the data verification process for each country dataset, 

each record is allocated to one of the layers based on the taxon, sector, and the area where the 

taxon was caught, and is formatted to fit the structure of the final database (see Figure 1 for 

overview). For example, the total reported landings presented in the reconstruction dataset of 

each country/territory (which represent the catches landed and deemed reported by national 

authorities from within the own EEZ of that country/territory) are compared with the reported 

data as present by FAO on behalf of the respective country/territory for each year. Any ‘surplus’ 

of FAO data are then considered to have been caught outside the EEZ of the given  

country/territory, and thus are treated as part of ‘Layer 2’ data. Thus, ‘Layer 2’ data are a derived 

data product. When any issue with the reconstructed catch data are identified, the issue is raised 

with the Sea Around Us catch reconstruction team and the original authors of the reconstruction 

for further checking and refining of the input data. Additional data verification steps include 

harmonization of scientific taxon names in the reconstruction data with the official, globally 

recognized and standardized taxon names via the global taxonomic authorities of FishBase 

(www.fishbase.org) and SeaLifeBase (www.sealifebase.org). Fishing country names and EEZ 

names are also checked and standardized against the Sea Around Us spatial databases. The 

fishing country and EEZ names allow us to link the catch data to the foreign fishing access 

database, which contains the information on which fishing country can access the EEZ of another 

country (see ‘Foreign fishing access database’ section below).   

  

http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
http://www.sealifebase.org/
http://www.sealifebase.org/
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Figure 1. Data verification process for catch reconstruction data of the Sea Around Us.  

  

Foreign fishing access database  

The foreign fishing access database, initially derived from the fishing agreement database of FAO 

(1999), contains observed foreign fishing records, and fishing agreements and treaties that were 

signed by fishing countries and the host countries in whose EEZs the foreign fleets were allowed 

to fish. In addition, the database also includes the start and end year of agreements and/or 

observed access. The type of access is also specified as ‘assumed unilateral’, ‘assumed 

reciprocal’, ‘unilateral’ or ‘reciprocal’. Also, the type of agreement is recorded in the database 

and the agreement can be classified into bilateral agreements such as partnership, multilateral 

agreements such as international conventions or agreements with regional fisheries organizations, 

private, licensing or exploratory agreements. Additional information contained in this database 

relates to the type of taxa likely targeted by foreign fleets (e.g., tuna vs. demersal taxa).   

This database is used in conjunction with the catch reconstruction database and the taxon 

distribution database (see Section #3) in the spatial allocation process that assigns catches to the 

global Sea Around Us ½ x ½ degree latitude and longitude cell system.  

  

The Sea Around Us ½ x ½ degree cell system  

The Sea Around Us uses a spatial database where the world is divided into a global coverage of  

30 arc minute cells (½ x ½ degree). A world cell structure was implemented to conform to the  
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Land-Ocean Interactions in the Coastal Zone (LOICZ) system (www.loicz.org/). Thus, the world 

is partitioned into 30 x 30 arc minute cells with a top left bounding box corner coordinate at 90°N 

and 180°W. This results in 180,000 such ½ x ½ degree cells covering the world’s oceans, which 

form the spatial foundation for all Sea Around Us data.   

  

Spatial allocation procedure  

The spatial allocation procedure - although it relies on the same global Sea Around Us grid of ½ x 

½ degree cells that was used previously - is different from the approach used in the early phase of 

the Sea Around Us (until 2006) and described in Watson et al. (2004). In the earlier allocations, 

catches pertaining to large reporting areas (mainly FAO statistical areas) were allocated directly 

to the half-degree cells, subject only to constraints provided by initially derived taxon 

distributions for the various taxa (Close et al. 2006), and an earlier and more limited version of 

the fishing access database granting foreign fleets differential access to the EEZs of various 

countries (Watson et al. 2004). Thereafter, the catch by a given fishing country in a given EEZ 

was obtained by summing the catch that had been allocated to the cells making up the EEZ of 

that country. This process made the spatial allocation overly sensitive to the precise shape and 

cell-probabilities of the taxon distribution maps, and the precision of very problematic EEZ 

access rules for different countries. It regularly resulted in sudden and unrealistic shifts of 

allocated domestic catches into and out of given EEZs purely due to the lifting or imposing of 

EEZ access constraints. Attempts to improve the allocation procedure with more internal rules 

made it unwieldy, fragile and extremely time consuming, and thus the Sea Around Us abandoned 

this approach in the mid-2000s.  

The more structured allocation procedure that was devised as a replacement, and is described here 

(Figure 2), relies on catch data that are spatially pre-assigned (through in-depth catch 

reconstructions, see Section #1) to the EEZ or EEZ-equivalent waters (for years pre-dating the 

declaration of individual EEZs) of a given maritime country or territory, and, in the case of 

smallscale fisheries (i.e., the artisanal, subsistence and recreational sectors), to the Inshore 

Fishing Areas (Chuenpagdee et al. 2006), and in the case of industrially caught large pelagics, to 

large ‘tuna cells’ (Section #2). This radically reduces the number of access rules and constraints 

that the allocation procedure must consider, reduces the chances of fish catches showing up in the 

EEZs of the wrong country, and dramatically reduces the processing times of the allocation 

procedure.  

Previously, we also used the spatial allocation process to simultaneously disaggregate (i.e., 

taxonomically improve) uninformative taxonomic groups such as ‘miscellaneous marine fishes’ 

(FAO term: ‘marine fishes nei’) by relying on taxonomic information in neighboring ½ degree 

cells. This further added to the complexity of the allocation procedure and increased the difficulty 

of tracing actual country/taxon/catch entities through the process. This step was also discontinued 

in the new allocation approach. Instead, our ‘new and improved’ allocation procedure 

disaggregates the input catch data as part of the country-by-country catch reconstruction process 

(Section #1), with the associated more transparent taxonomic changes documented in the 

associated technical report for each reconstruction. Within the catch reconstruction database, we 

http://www.loicz.org/
http://www.loicz.org/
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keep track of the quality of the taxonomic disaggregation, such that indicators sensitive to the 

quality of the disaggregation are not computed from inappropriate data (see ‘Catch composition’ 

in Section #1).  

These pre-allocation data processing modifications allow focusing on the truly spatial elements of 

the allocation, which are handled through a series of conceptual algorithmic steps. The general 

algorithm of spatial allocation of catches is harmonized for Layers 1, 2, and 3 (Table 1), which 

allows for a better software flow, while maintaining the conceptual differences in data layers.   

  

  
Figure 2. Spatial allocation procedure for catch reconstruction data of the Sea Around Us, resulting in the 

final ½ x ½ degree allocated cell data.   

  

The spatial allocation of the catch is the process of computing the catch that can be allocated to 

each ½ degree cell based on the overlap of three main components: 1) the catch data, 2) the 

fishing access observations/agreements, and 3) the biological taxon distributions (Figure 5.2). 

The relationship/overlap amongst these components is facilitated by a series of Geographic 

Information System (GIS) layers, which essentially bind them together.   

  

How each data layer is conceptually unique and how it is handled  

In Layer 1, the data come spatially organized by each fishing entity’s EEZ(s). The allocation 

algorithm allocates the small-scale catches (i.e., artisanal, subsistence, and recreational) only to 

the cells associated with the Inshore Fishing Area (IFA, Chuenpagdee et al. 2006) of that fishing 

entity’s EEZ, while industrial catches can be allocated anywhere within that fishing entity’s 

EEZ(s), as long as they remain compatible with the biological taxon distributions. Fishing access 

agreements are not applicable to this data layer, as a fishing entity (i.e., country) is always 



Methods-Catch&Allocation-www.seaaroundus.org  April 28, 2016  

  

40  

  

allowed to fish in its own EEZ waters. To represent the historical expansion of industrial fishing 

since the 1950s in each country’s waters, from more easily accessible areas closer to shore to the 

full extent of each country’s EEZ, we use the depth adjustment function for domestic industrial 

catches described in Watson and Morato (2013). This function takes into account that, as 

domestic industrial catches increase over time, an increasing fraction are being taken 

progressively further offshore (but within EEZ boundaries).  

  
Table 1. Parameters of the three catch data input layers as used in the spatial allocation to ½ x ½ degree cells of the Sea Around Us.   

 
Taxa included  All except industrial large pelagics  All except large pelagics  Large pelagics (n =140+)  
Spatial scope  Country’s own EEZ  Other EEZs and high seas  Global tuna cells  
Sectors  Industrial,   

Artisanal,   
Subsistence,   
Recreational  

Industrial  Industrial  

Distributions  Biological  Biological  Biological  
Fishing access   Automatically granted  Used  Used  
Granularity of data  EEZ, IFA1  EEZ, high seas, ICES, CCAMLAR, 

NAFO, FAO and other areas  
Six types of tuna cells: 1x1, 5x5, 5x10, 

10x10, 10x20, 20x20 degrees lat. long.   

 
1  Inshore Fishing Area (IFA), defined as the area up to 50 km from shore or 200 m depth, whichever comes first (Chuenpagdee et al. 2006). Note 

that IFAs are defined only along inhabited coastlines.  

  

In Layer 2, the spatial granularity of the catch data can be by EEZ, high seas, or any other form of 

regional reporting areas, i.e., ICES, CCAMLR, NAFO, or FAO statistical areas. However, in all 

cases it excludes the fishing entity (fishing country’s) own EEZ waters (which are treated in 

Layer 1). In Layer 2, the fishing access observations/agreements are used to compute the areas 

which allow fishing for a particular fishing entity, year, and taxon. Note that we tread EEZ areas 

prior to each country’s EEZ declaration year as ‘open access’, meaning no restrictions are applied 

to other countries being allowed access to these waters. Once this area is computed, it is 

superimposed on the biological taxon distributions to derive the final Layer 2 catch allocation.  

In Layer 3, which only covers industrial large pelagics and their associated bycatch and discards, 

the input catch data are spatially organized by larger tuna cells which range from 1 x 1 to 20 x 20 

degrees (Table 1, see also Section #2). Similar to the region specific areas in Layer 2, these larger 

cells are intersected with all the EEZ boundaries to create a GIS layer which is suitable for use in 

the algorithm. Thereafter, the fishing access observations/agreements and taxon distributions are 

applied to calculate the final Layer 3 catch allocation. The spatial allocation algorithm consists of 

4 main steps:  

1. Validating and importing the fishing access observations/agreements database;  

2. Validating and importing the catch reconstruction database;  

3. Importing the biological taxon distributions; and  

4. Computing the catch that can be allocated to each ½ degree cell for each data layer in an 

iterative process (allowing for verifications and corrections to any of the input 

parameters).  

  

  Layer 1   Layer 2   Layer 3   
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1. Validating and importing the fishing access observations/agreements database  

The fishing access observations/agreements are first verified using several consistency and  

‘matching’ tests (Figure 2) and, upon passing, they are imported into the main allocation  

database. This fishing access information is subsequently used in two different processes: (a) the 

verification process of the catch data (Layers 1, 2, and 3); and (b) the computing of the areas 

where a given fishing entity (i.e., country) is allow to fish for a specific year and taxon.   

  

2. Validating and importing the catch reconstruction database  

The validating and importing of the catch data is a more complex process than the validating and 

importing process for the fishing access database. This process involves over 20 different 

preallocation data tests (Figure 2). These tests are designed to make sure that the data are 

coherent from the standpoint of database logic, and do not contain any accidental errors. These 

tests range from simple tests like “is the TaxonKey valid?” to more complex tests like “validate if 

the given fishing entity has the required fishing access observations/agreements to fish in the 

given marine area”. Every single row of catch data is examined via these tests, and if it passes all 

tests the data row in question is added to the main allocation database. If it fails any of the tests it 

is returned to the relevant Sea Around Us data experts for review, often involving the original 

authors of the catch reconstruction (Figure 2). This iterative process is repeated until all the data 

rows pass all the pre-allocation tests.  

The process of importing the catch reconstruction database includes an important sub-module for 

harmonizing the marine areas. This module is crucial, as the catch data come in a variety of 

different spatial reporting areas that are not globally homogenous in GIS definitions (e.g., the 

EEZ of Albania is one entity, while the EEZ of India, Brazil or the US are subdivided into 

subnational areas; the north-east Atlantic uses ICES statistical areas, etc.). To harmonize these 

marine areas and make them accessible to the core allocation process, any given ½ degree cell is 

split into its constituent countries EEZs and high seas components. Then, the fishing access 

observations/agreements are applied to this layer to determine which of these ‘shards’ of ½ 

degree cells are allowing access to a given fishing entity. Once this is determined, these 

collections of ‘shards’ are assigned to the given row of catch data, the result is a harmonized view 

of all the different marine areas. Presently, we have assigned over 12,000 marine areas into their 

constituent ‘shards’ of ½ degree cells, ranging from EEZs and LMEs, to ICES, CCAMLR, 

NAFO, and FAO statistical areas. The procedure allows future marine areas to be readily 

assigned.  

  

3. Importing biological taxon distributions  

Importing the biological taxon distributions is a fairly straightforward process. The over 2,000 

individual taxon distributions (see Section #3) are generated as individual text files (csv format) 

containing for each ½ x ½ degree cell the specific taxon’s probability of occurrence. These 

individual taxon distribution files are compiled into a database table for further use.   

  

4. Computing/allocating the catch to ½ degree cells  
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Once Steps 1-3 are completed, we perform the computations which yield the final spatial ½ x ½ 

degree allocation results. The catch of a given data row, TotalCatch, of taxon T is distributed 

amongst eligible ½ degree cells, Cells 1...n, using the following weighted average formula:  

  

  

  

Throughout the allocation process, data parameters besides  year and taxon, such as sector, catch 

type, reporting status etc. are preserved and carried over into the final allocated database.  

  

The final results of the intense and detailed database preparation and spatial allocation are time 

series of catches by ½ degree cells that are ecologically reliable (i.e., taxa are caught where they 

occur, and in relation to their relative abundance) and politically likely (e.g., by fishing country 

and within EEZ waters to which they have access to).   

  

Summarizing allocated data by spatial search regions  

While some input data contain spatial designations, such as EEZs or FAO areas (Section #1) or 

large tuna cells (Section #2), no such spatial pre-designations exist for other spatial search 

regions we offer, such as LMEs, RFMOs, High Seas etc. in any input data. Thus, data presented 

for these search areas, or any other custom spatial area, are the result of combining the data from 

subsets of ½ x ½ degree cells (Section #4) covering the area in question.  
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Section 5  

  

Mapping data  
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Besides providing our data by selected spatial areas such as by EEZs or LMEs via our website, we 

also generate spatio-temporal maps presenting the results of our process of assigning catches and 

related data to ecologically meaningful (via explicit taxon probability distributions, see Section 3) 

and politically feasible space (via our fishing access database, see Section 4.2). This mapping 

provides a unique visualization tool to better understand the spatio-temporal development of global 

fisheries, and is being expanded to incorporate a variety of parameter combinations.   

Of note is that the map projection we use is an equal area projection, which, unlike the more 

commonly used Mercator projection, corrects for the over-emphasis of northern hemisphere land 

and ocean areas, and thus more realistically represents areas and space across the globe, including 

in the tropics.   

We anticipate that this mapping tool will be instrumental in refining and improving data and input 

parameters over time, and we welcome constructive feedback.  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Section 6  

The global ex-vessel fish price database  
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U. Rashid Sumaila, Lydia Teh, Dirk Zeller and Daniel Pauly  

  

The database described here provides the ex-vessel price, and when combined with the spatially 

allocated catches, the landed values of fish caught, by major groupings of species. Besides being 

economic indicators in their own right, the ex-vessel price and landed value of fish are essential 

pieces of information needed to help manage fishery resources sustainably to achieve long-term 

economic and social benefits without depleting the resource base. This is because the financial 

gains from catch when it is landed is one of the primary motivators for fishers to go fishing. Until 

the development of the current database, there was no single database available publicly where 

interested members of the public, researchers and managers can easily find landed values of the 

world's major commercial fish catches. The Food and Agriculture Organization of the United 

Nations (FAO) compiles product and processed fish prices, but not ex-vessel prices, from which 

landed values are calculated.  

  

Data collection and compilation  

Ex-vessel price data for the world's commercial species were compiled from published sources, 

and the database was first described by Sumaila et al. (2007), and updated by Swartz et al. 

(2013). The aim was to add value by taking the data already available but widely scattered to a 

higher level, one that will permit more policy-relevant ecological and economic analysis of 

fisheries. We concentrated, in the first instance, on data for the major fishing countries on each 

continent. In this way, we collected data that covered the major fisheries of the world, while 

putting in place a database structure that allows continuous inclusion of data for more countries 

over time.  

The database runs from 1950 to the year most recently represented by FAO marine fisheries 

catches, i.e., from the year the FAO started collecting and compiling global fish catch data. It is 

worth noting that many analyses of global fisheries begin from this year.  

We searched all available sources of ex-vessel price data, including the FAO, the statistics office 

of the OECD, the European Commission, Fisheries and Oceans Canada, the US National Marine 

Fisheries Service, Statistics Norway, Southeast Asia Fisheries Development Centre (SEAFDEC) 

and FAO-Globefish, plus libraries, the web and the published literature. We also worked through 

our partners from all over the world to help us search for data through on-the-ground data 

collection efforts.  

  

Filling the data gaps  

As would be expected, a substantial portion of the data matrix could not be completed with 

available data. Therefore, we developed an assignment procedure to help fill the gaps.  

As described in Sumaila et al. (2007), the collected data from published sources were used with 

an interpolation process to ensure that all catch records from our global catch database, regardless 

of taxon, country, region and year, would have assigned prices. Given that prices for most of the 

world's catches were available directly from the price database described above, it was possible to 
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use a structured interpolation process to fill in missing cases using data from similar species, 

similar countries, etc. The general process of interpolation was one of replacing general prices 

with more specific ones where they were available. This process assumed that the type of animal 

(i.e., taxon) was the primary determinant of the price. Following this, in order of importance, 

were the country fishing and the year when the catches were reported. At each step in the 

interpolation process, the level of specificity in the documentation was recorded. If a more 

specific price for a catch record occurred in a subsequent step in the process, then the old price, 

and its record of specificity, was overwritten with the new price. In this way, all catch records 

recorded in the global database were matched with the most specific and relevant price recorded 

in the price database, or weighted averages of these (weighted by their individual specificity) 

when several prices were available. The original interpolation approach was improved by Swartz 

et al. (2012), which focused on the computation of annual average international prices for each 

species group, adjusted to domestic prices using the real exchange rate based on national 

purchasing power parity. Key advantages of the new approach are that it allows a larger number 

of reported prices to be used in the price estimation, and accounts for relative price level 

differences that exist between countries. A measure of the price specificity/applicability is 

computed for each taxon for which a landed value is presented. These measures are used to guide 

the priorities in further price data collection efforts.  

  

The database  

The primary data in the database are nominal ex-vessel prices as obtained, in most cases by 

dividing officially reported landed values by landings. Ex-vessel prices and landed values are 

presented in US$ to allow a uniform basis for comparison. However, the starting point for the 

data is always local ex-vessel prices in local currency, which are converted into US$ equivalents.  

There are two parallel parts to the database, namely, ‘nominal’ and ‘real’ ex-vessel prices and 

landed values. The ‘real’ numbers were determined by using local consumer price indices (CPI, 

obtained from the World Bank) to convert local ‘nominal’ ex-vessel prices into ‘real’ ex-vessel 

prices using the year 2005 as basis. These are then converted into year 2005 US$ equivalents.  
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